Abstract:Digital twins (DTs) are increasingly utilized to monitor, manage, and optimize complex systems across various domains, including civil engineering. A core requirement for an effective DT is to act as a fast, accurate, and maintainable surrogate of its physical counterpart, the physical twin (PT). To this end, machine learning (ML) is frequently employed to (i) construct real-time DT prototypes using efficient reduced-order models (ROMs) derived from high-fidelity simulations of the PT's nominal behavior, and (ii) specialize these prototypes into DT instances by leveraging historical sensor data from the target PT. Despite the broad applicability of ML, its use in DT engineering remains largely ad hoc. Indeed, while conventional ML pipelines often train a single model for a specific task, DTs typically require multiple, task- and domain-dependent models. Thus, a more structured approach is required to design DTs. In this paper, we introduce DesCartes Builder, an open-source tool to enable the systematic engineering of ML-based pipelines for real-time DT prototypes and DT instances. The tool leverages an open and flexible visual data flow paradigm to facilitate the specification, composition, and reuse of ML models. It also integrates a library of parameterizable core operations and ML algorithms tailored for DT design. We demonstrate the effectiveness and usability of DesCartes Builder through a civil engineering use case involving the design of a real-time DT prototype to predict the plastic strain of a structure.
Abstract:The development of digital twins (DTs) for physical systems increasingly leverages artificial intelligence (AI), particularly for combining data from different sources or for creating computationally efficient, reduced-dimension models. Indeed, even in very different application domains, twinning employs common techniques such as model order reduction and modelization with hybrid data (that is, data sourced from both physics-based models and sensors). Despite this apparent generality, current development practices are ad-hoc, making the design of AI pipelines for digital twinning complex and time-consuming. Here we propose Function+Data Flow (FDF), a domain-specific language (DSL) to describe AI pipelines within DTs. FDF aims to facilitate the design and validation of digital twins. Specifically, FDF treats functions as first-class citizens, enabling effective manipulation of models learned with AI. We illustrate the benefits of FDF on two concrete use cases from different domains: predicting the plastic strain of a structure and modeling the electromagnetic behavior of a bearing.