Abstract:The World Health Organization suggests that road traffic crashes cost approximately 518 billion dollars globally each year, which accounts for 3% of the gross domestic product for most countries. Most fatal road accidents in urban areas involve Vulnerable Road Users (VRUs). Smart cities environments present innovative approaches to combat accidents involving cutting-edge technologies, that include advanced sensors, extensive datasets, Machine Learning (ML) models, communication systems, and edge computing. This paper proposes a strategy and an implementation of a system for road monitoring and safety for smart cities, based on Computer Vision (CV) and edge computing. Promising results were obtained by implementing vision algorithms and tracking using surveillance cameras, that are part of a Smart City testbed, the Aveiro Tech City Living Lab (ATCLL). The algorithm accurately detects and tracks cars, pedestrians, and bicycles, while predicting the road state, the distance between moving objects, and inferring on collision events to prevent collisions, in near real-time.
Abstract:The development of intelligent Industrial Internet of Things (IIoT) systems promises to revolutionize operational and maintenance practices, driving improvements in operational efficiency. Anomaly detection within IIoT architectures plays a crucial role in preventive maintenance and spotting irregularities in industrial components. However, due to limited message and processing capacity, traditional Machine Learning (ML) faces challenges in deploying anomaly detection models in resource-constrained environments like LoRaWAN. On the other hand, Federated Learning (FL) solves this problem by enabling distributed model training, addressing privacy concerns, and minimizing data transmission. This study explores using FL for anomaly detection in industrial and civil construction machinery architectures that use IIoT prototypes with LoRaWAN communication. The process leverages an optimized autoencoder neural network structure and compares federated models with centralized ones. Despite uneven data distribution among machine clients, FL demonstrates effectiveness, with a mean F1 score (of 94.77), accuracy (of 92.30), TNR (of 90.65), and TPR (92.93), comparable to centralized models, considering airtime of trainning messages of 52.8 min. Local model evaluations on each machine highlight adaptability. At the same time, the performed analysis identifies message requirements, minimum training hours, and optimal round/epoch configurations for FL in LoRaWAN, guiding future implementations in constrained industrial environments.