Abstract:From dating to job interviews, making new friends or simply chatting with the cashier at checkout, engaging in small talk is a vital, everyday social skill. For adults with Autism Spectrum Disorder (ASD), small talk can be particularly challenging, yet it is essential for social integration, building relationships, and accessing professional opportunities. In this study, we present our development and evaluation of an in-home autonomous robot system that allows users to practice small talk. Results from the week-long study show that adults with ASD enjoyed the training, made notable progress in initiating conversations and improving eye contact, and viewed the system as a valuable tool for enhancing their conversational skills.
Abstract:As foundation models increasingly permeate sensitive domains such as healthcare, finance, and mental health, ensuring their behavior meets desired outcomes and social expectations becomes critical. Given the complexities of these high-dimensional models, traditional techniques for constraining agent behavior, which typically rely on low-dimensional, discrete state and action spaces, cannot be directly applied. Drawing inspiration from robotic action selection techniques, we propose the grounded observer framework for constraining foundation model behavior that offers both behavioral guarantees and real-time variability. This method leverages real-time assessment of low-level behavioral characteristics to dynamically adjust model actions and provide contextual feedback. To demonstrate this, we develop a system capable of sustaining contextually appropriate, casual conversations ("small talk"), which we then apply to a robot for novel, unscripted interactions with humans. Finally, we discuss potential applications of the framework for other social contexts and areas for further research.
Abstract:Beyond mere formality, small talk plays a pivotal role in social dynamics, serving as a verbal handshake for building rapport and understanding. For conversational AI and social robots, the ability to engage in small talk enhances their perceived sociability, leading to more comfortable and natural user interactions. In this study, we evaluate the capacity of current Large Language Models (LLMs) to drive the small talk of a social robot and identify key areas for improvement. We introduce a novel method that autonomously generates feedback and ensures LLM-generated responses align with small talk conventions. Through several evaluations -- involving chatbot interactions and human-robot interactions -- we demonstrate the system's effectiveness in guiding LLM-generated responses toward realistic, human-like, and natural small-talk exchanges.