Abstract:Scene text image super-resolution (STISR) enhances the resolution and quality of low-resolution images. Unlike previous studies that treated scene text images as natural images, recent methods using a text prior (TP), extracted from a pre-trained text recognizer, have shown strong performance. However, two major issues emerge: (1) Explicit categorical priors, like TP, can negatively impact STISR if incorrect. We reveal that these explicit priors are unstable and propose replacing them with Non-CAtegorical Prior (NCAP) using penultimate layer representations. (2) Pre-trained recognizers used to generate TP struggle with low-resolution images. To address this, most studies jointly train the recognizer with the STISR network to bridge the domain gap between low- and high-resolution images, but this can cause an overconfidence phenomenon in the prior modality. We highlight this issue and propose a method to mitigate it by mixing hard and soft labels. Experiments on the TextZoom dataset demonstrate an improvement by 3.5%, while our method significantly enhances generalization performance by 14.8\% across four text recognition datasets. Our method generalizes to all TP-guided STISR networks.
Abstract:Few-shot object detection (FSOD) aims to classify and detect few images of novel categories. Existing meta-learning methods insufficiently exploit features between support and query images owing to structural limitations. We propose a hierarchical attention network with sequentially large receptive fields to fully exploit the query and support images. In addition, meta-learning does not distinguish the categories well because it determines whether the support and query images match. In other words, metric-based learning for classification is ineffective because it does not work directly. Thus, we propose a contrastive learning method called meta-contrastive learning, which directly helps achieve the purpose of the meta-learning strategy. Finally, we establish a new state-of-the-art network, by realizing significant margins. Our method brings 2.3, 1.0, 1.3, 3.4 and 2.4% AP improvements for 1-30 shots object detection on COCO dataset. Our code is available at: https://github.com/infinity7428/hANMCL