AIRI, Skolkovo Institute of Science and Technology
Abstract:Behavioral Foundation Models (BFMs) proved successful in producing policies for arbitrary tasks in a zero-shot manner, requiring no test-time training or task-specific fine-tuning. Among the most promising BFMs are the ones that estimate the successor measure learned in an unsupervised way from task-agnostic offline data. However, these methods fail to react to changes in the dynamics, making them inefficient under partial observability or when the transition function changes. This hinders the applicability of BFMs in a real-world setting, e.g., in robotics, where the dynamics can unexpectedly change at test time. In this work, we demonstrate that Forward-Backward (FB) representation, one of the methods from the BFM family, cannot distinguish between distinct dynamics, leading to an interference among the latent directions, which parametrize different policies. To address this, we propose a FB model with a transformer-based belief estimator, which greatly facilitates zero-shot adaptation. We also show that partitioning the policy encoding space into dynamics-specific clusters, aligned with the context-embedding directions, yields additional gain in performance. These traits allow our method to respond to the dynamics observed during training and to generalize to unseen ones. Empirically, in the changing dynamics setting, our approach achieves up to a 2x higher zero-shot returns compared to the baselines for both discrete and continuous tasks.
Abstract:The rapid advancement of Large Language Models (LLMs) has introduced significant challenges in moderating user-model interactions. While LLMs demonstrate remarkable capabilities, they remain vulnerable to adversarial attacks, particularly ``jailbreaking'' techniques that bypass content safety measures. Current content moderation systems, which primarily rely on input prompt filtering, have proven insufficient, with techniques like Best-of-N (BoN) jailbreaking achieving success rates of 80% or more against popular LLMs. In this paper, we introduce Flexible LLM-Assisted Moderation Engine (FLAME): a new approach that shifts the focus from input filtering to output moderation. Unlike traditional circuit-breaking methods that analyze user queries, FLAME evaluates model responses, offering several key advantages: (1) computational efficiency in both training and inference, (2) enhanced resistance to BoN jailbreaking attacks, and (3) flexibility in defining and updating safety criteria through customizable topic filtering. Our experiments demonstrate that FLAME significantly outperforms current moderation systems. For example, FLAME reduces attack success rate in GPT-4o-mini and DeepSeek-v3 by a factor of ~9, while maintaining low computational overhead. We provide comprehensive evaluation on various LLMs and analyze the engine's efficiency against the state-of-the-art jailbreaking. This work contributes to the development of more robust and adaptable content moderation systems for LLMs.