Abstract:Objective: Create precise, structured, data-backed guidelines for type 2 diabetes treatment progression, suitable for clinical adoption. Research Design and Methods: Our training cohort was composed of patient (with type 2 diabetes) visits from Boston Medical Center (BMC) from 1998 to 2014. We divide visits into 4 groups based on the patient's treatment regimen before the visit, and further divide them into subgroups based on the recommended treatment during the visit. Since each subgroup has observational data, which has confounding bias (sicker patients are prescribed more aggressive treatments), we used machine learning and optimization to remove some datapoints so that the remaining data resembles a randomized trial. On each subgroup, we train AI-backed tree-based models to prescribe treatment changes. Once we train these tree models, we manually combine the models for every group to create an end-to-end prescription pipeline for all patients in that group. In this process, we prioritize stepping up to a more aggressive treatment before considering less aggressive options. We tested this pipeline on unseen data from BMC, and an external dataset from Hartford healthcare (type 2 diabetes patient visits from January 2020 to May 2024). Results: The median HbA1c reduction achieved by our pipelines is 0.26% more than what the doctors achieved on the unseen BMC patients. For the Hartford cohort, our pipelines were better by 0.13%. Conclusions: This precise, interpretable, and efficient AI-backed approach to treatment progression in type 2 diabetes is predicted to outperform the current practice and can be deployed to improve patient outcomes.
Abstract:Recent advancements in machine learning (ML), natural language processing (NLP), and foundational models have shown promise for real-life applications in critical, albeit compute-constrainted fields like healthcare. In such areas, combining foundational models with supervised ML offers potential for automating tasks like diagnosis and treatment planning, but the limited availability of onsite computational resources pose significant challenges before applying these technologies effectively: Current approaches either yield subpar results when using pretrained models without task-specific adaptation, or require substantial computational resources for fine-tuning, which is often a barrier to entry in such environments. This renders them inaccessible in applications where performance and quality standards are high, but computational resources are scarce. To bridge the gap between best-in-class performance and accessibility, we propose a novel method for adapting foundational, multimodal embeddings to downstream tasks, without the need of expensive fine-tuning processes. Our method leverages frozen embeddings from Large Language Models (LLMs) and Vision Models, and uses contrastive learning to train a small, task-specific nonlinear projection that can be used in the downstream task, without having to fine-tune the original foundational models. We show that this efficient procedure leads to significant performance improvements across various downstream tasks, and perhaps more importantly with minimal computational overhead, offering a practical solution for the use of advanced, foundational ML models in resource-constrained settings.