Abstract:Regardless the advancements in device capabilities, efficient inferencing advanced large language models (LLMs) at the edge remains challenging due to limited device memory and power constraints. Existing strategies, such as aggressive quantization, pruning, or remote inference, trade accuracy for efficiency or lead to substantial cost burdens. This position paper introduces a new approach that leverages speculative decoding, previously viewed primarily as a decoding acceleration technique for autoregressive generation of LLMs, as a promising approach specifically adapted for edge computing by orchestrating computation across heterogeneous devices. We propose SLED, a method that allows lightweight edge devices to draft multiple candidate tokens locally using diverse draft models, while a single, shared edge server efficiently batches and verifies the tokens utilizing a more precise target model. This approach supports device heterogeneity and reduces server-side memory footprint by avoiding the need to deploy multiple target models. Our initial experiments with Jetson Orin Nano, Raspberry Pi 5, and an RTX 6000 edge server indicate substantial benefits: significantly reduced latency, improved energy efficiency, and increased concurrent inference sessions, all without sacrificing model accuracy.