Abstract:Sign Language Translation (SLT) is a complex cross-modal task requiring the integration of Manual Signals (MS) and Non-Manual Signals (NMS). While recent gloss-free SLT methods have made strides in translating manual gestures, they frequently overlook the semantic criticality of facial expressions, resulting in ambiguity when distinct concepts share identical manual articulations. To address this, we present **EASLT** (**E**motion-**A**ware **S**ign **L**anguage **T**ranslation), a framework that treats facial affect not as auxiliary information, but as a robust semantic anchor. Unlike methods that relegate facial expressions to a secondary role, EASLT incorporates a dedicated emotional encoder to capture continuous affective dynamics. These representations are integrated via a novel *Emotion-Aware Fusion* (EAF) module, which adaptively recalibrates spatio-temporal sign features based on affective context to resolve semantic ambiguities. Extensive evaluations on the PHOENIX14T and CSL-Daily benchmarks demonstrate that EASLT establishes advanced performance among gloss-free methods, achieving BLEU-4 scores of 26.15 and 22.80, and BLEURT scores of 61.0 and 57.8, respectively. Ablation studies confirm that explicitly modeling emotion effectively decouples affective semantics from manual dynamics, significantly enhancing translation fidelity. Code is available at https://github.com/TuGuobin/EASLT.




Abstract:Negative reviews, the poor ratings in postpurchase evaluation, play an indispensable role in e-commerce, especially in shaping future sales and firm equities. However, extant studies seldom examine their potential value for sellers and producers in enhancing capabilities of providing better services and products. For those who exploited the helpfulness of reviews in the view of e-commerce keepers, the ranking approaches were developed for customers instead. To fill this gap, in terms of combining description texts and emotion polarities, the aim of the ranking method in this study is to provide the most helpful negative reviews under a certain product attribute for online sellers and producers. By applying a more reasonable evaluating procedure, experts with related backgrounds are hired to vote for the ranking approaches. Our ranking method turns out to be more reliable for ranking negative reviews for sellers and producers, demonstrating a better performance than the baselines like BM25 with a result of 8% higher. In this paper, we also enrich the previous understandings of emotions in valuing reviews. Specifically, it is surprisingly found that positive emotions are more helpful rather than negative emotions in ranking negative reviews. The unexpected strengthening from positive emotions in ranking suggests that less polarized reviews on negative experience in fact offer more rational feedbacks and thus more helpfulness to the sellers and producers. The presented ranking method could provide e-commerce practitioners with an efficient and effective way to leverage negative reviews from online consumers.