Abstract:Many students lack access to expert research mentorship. We ask whether an AI mentor can move undergraduates from an idea to a paper. We build METIS, a tool-augmented, stage-aware assistant with literature search, curated guidelines, methodology checks, and memory. We evaluate METIS against GPT-5 and Claude Sonnet 4.5 across six writing stages using LLM-as-a-judge pairwise preferences, student-persona rubrics, short multi-turn tutoring, and evidence/compliance checks. On 90 single-turn prompts, LLM judges preferred METIS to Claude Sonnet 4.5 in 71% and to GPT-5 in 54%. Student scores (clarity/actionability/constraint-fit; 90 prompts x 3 judges) are higher across stages. In multi-turn sessions (five scenarios/agent), METIS yields slightly higher final quality than GPT-5. Gains concentrate in document-grounded stages (D-F), consistent with stage-aware routing and groundings failure modes include premature tool routing, shallow grounding, and occasional stage misclassification.
Abstract:We report a case study of four end-to-end attempts to autonomously generate ML research papers using a pipeline of six LLM agents mapped to stages of the scientific workflow. Of these four, three attempts failed during implementation or evaluation. One completed the pipeline and was accepted to Agents4Science 2025, an experimental inaugural venue that required AI systems as first authors, passing both human and multi-AI review. From these attempts, we document six recurring failure modes: bias toward training data defaults, implementation drift under execution pressure, memory and context degradation across long-horizon tasks, overexcitement that declares success despite obvious failures, insufficient domain intelligence, and weak scientific taste in experimental design. We conclude by discussing four design principles for more robust AI-scientist systems, implications for autonomous scientific discovery, and we release all prompts, artifacts, and outputs at https://github.com/Lossfunk/ai-scientist-artefacts-v1