Abstract:The growth of cloud computing has revolutionized data processing and storage capacities to another levels of scalability and flexibility. But in the process, it has created a huge challenge of security, especially in terms of safeguarding sensitive data. Classical security practices, including encryption at rest and during transit, fail to protect data in use and expose it to various possible breaches. In response to this problem , Confidential Computing has been a tool ,seeking to secure data in processing by usage of hardware-based Trusted Execution Environments (TEEs). TEEs, including Intel's Software Guard Extensions (SGX) and ARM's TrustZone, offers protected contexts within the processor, where data is kept confidential ,intact and secure , even with malicious software or compromised operating systems. In this research, we have explored the architecture and security features of TEEs like Intel SGX and ARM TrustZone, and their effectiveness in improving cloud data security. From a thorough literature survey ,we have analyzed the deployment strategies, performance indicators, and practical uses of these TEEs for the same purpose. In addition, we have discussed the issues regarding deployment, possible weaknesses, scalability issues, and integration issues. Our results focuses on the central position of TEEs in strengthening and advancing cloud security infrastructures, pointing towards their ability to create a secure foundation for Confidential Computing.