Abstract:In radar systems, high resolution in the Doppler dimension is important for detecting slow-moving targets as it allows for more distinct separation between these targets and clutter, or stationary objects. However, achieving sufficient resolution is constrained by hardware capabilities and physical factors, leading to the development of processing techniques to enhance the resolution after acquisition. In this work, we leverage artificial intelligence to increase the Doppler resolution in range-Doppler maps. Based on a zero-padded FFT, a refinement via the generative neural networks of diffusion models is achieved. We demonstrate that our method overcomes the limitations of traditional FFT, generating data where closely spaced targets are effectively separated.
Abstract:In recent years, diffusion models (DMs) have become a popular method for generating synthetic data. By achieving samples of higher quality, they quickly became superior to generative adversarial networks (GANs) and the current state-of-the-art method in generative modeling. However, their potential has not yet been exploited in radar, where the lack of available training data is a long-standing problem. In this work, a specific type of DMs, namely denoising diffusion probabilistic model (DDPM) is adapted to the SAR domain. We investigate the network choice and specific diffusion parameters for conditional and unconditional SAR image generation. In our experiments, we show that DDPM qualitatively and quantitatively outperforms state-of-the-art GAN-based methods for SAR image generation. Finally, we show that DDPM profits from pretraining on largescale clutter data, generating SAR images of even higher quality.