Abstract:Electric Vehicles (EVs) are rapidly gaining adoption as a sustainable alternative to fuel-powered vehicles, making secure charging infrastructure essential. Despite traditional authentication protocols, recent results showed that attackers may steal energy through tailored relay attacks. One countermeasure is leveraging the EV's fingerprint on the current exchanged during charging. However, existing methods focus on the final charging stage, allowing malicious actors to consume substantial energy before being detected and repudiated. This underscores the need for earlier and more effective authentication methods to prevent unauthorized charging. Meanwhile, profiling raises privacy concerns, as uniquely identifying EVs through charging patterns could enable user tracking. In this paper, we propose a framework for uniquely identifying EVs using physical measurements from the early charging stages. We hypothesize that voltage behavior early in the process exhibits similar characteristics to current behavior in later stages. By extracting features from early voltage measurements, we demonstrate the feasibility of EV profiling. Our approach improves existing methods by enabling faster and more reliable vehicle identification. We test our solution on a dataset of 7408 usable charges from 49 EVs, achieving up to 0.86 accuracy. Feature importance analysis shows that near-optimal performance is possible with just 10 key features, improving efficiency alongside our lightweight models. This research lays the foundation for a novel authentication factor while exposing potential privacy risks from unauthorized access to charging data.
Abstract:Industrial Control Systems (ICS) manage critical infrastructures like power grids and water treatment plants. Cyberattacks on ICSs can disrupt operations, causing severe economic, environmental, and safety issues. For example, undetected pollution in a water plant can put the lives of thousands at stake. ICS researchers have increasingly turned to honeypots -- decoy systems designed to attract attackers, study their behaviors, and eventually improve defensive mechanisms. However, existing ICS honeypots struggle to replicate the ICS physical process, making them susceptible to detection. Accurately simulating the noise in ICS physical processes is challenging because different factors produce it, including sensor imperfections and external interferences. In this paper, we propose SimProcess, a novel framework to rank the fidelity of ICS simulations by evaluating how closely they resemble real-world and noisy physical processes. It measures the simulation distance from a target system by estimating the noise distribution with machine learning models like Random Forest. Unlike existing solutions that require detailed mathematical models or are limited to simple systems, SimProcess operates with only a timeseries of measurements from the real system, making it applicable to a broader range of complex dynamic systems. We demonstrate the framework's effectiveness through a case study using real-world power grid data from the EPIC testbed. We compare the performance of various simulation methods, including static and generative noise techniques. Our model correctly classifies real samples with a recall of up to 1.0. It also identifies Gaussian and Gaussian Mixture as the best distribution to simulate our power systems, together with a generative solution provided by an autoencoder, thereby helping developers to improve honeypot fidelity. Additionally, we make our code publicly available.
Abstract:Smart grids are critical for addressing the growing energy demand due to global population growth and urbanization. They enhance efficiency, reliability, and sustainability by integrating renewable energy. Ensuring their availability and safety requires advanced operational control and safety measures. Researchers employ AI and machine learning to assess grid stability, but challenges like the lack of datasets and cybersecurity threats, including adversarial attacks, persist. In particular, data scarcity is a key issue: obtaining grid instability instances is tough due to the need for significant expertise, resources, and time. However, they are essential to test novel research advancements and security mitigations. In this paper, we introduce a novel framework to detect instability in smart grids by employing only stable data. It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator. Moreover, we include a new adversarial training layer to improve robustness against adversarial attacks. Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5\% in predicting grid stability and up to 98.9\% in detecting adversarial attacks. Moreover, we implemented our model in a single-board computer demonstrating efficient real-time decision-making with an average response time of less than 7ms. Our solution improves prediction accuracy and resilience while addressing data scarcity in smart grid management.
Abstract:Recent advancements in Artificial Intelligence, and particularly Large Language Models (LLMs), offer promising prospects for aiding system administrators in managing the complexity of modern networks. However, despite this potential, a significant gap exists in the literature regarding the extent to which LLMs can understand computer networks. Without empirical evidence, system administrators might rely on these models without assurance of their efficacy in performing network-related tasks accurately. In this paper, we are the first to conduct an exhaustive study on LLMs' comprehension of computer networks. We formulate several research questions to determine whether LLMs can provide correct answers when supplied with a network topology and questions on it. To assess them, we developed a thorough framework for evaluating LLMs' capabilities in various network-related tasks. We evaluate our framework on multiple computer networks employing private (e.g., GPT4) and open-source (e.g., Llama2) models. Our findings demonstrate promising results, with the best model achieving an average accuracy of 79.3%. Private LLMs achieve noteworthy results in small and medium networks, while challenges persist in comprehending complex network topologies, particularly for open-source models. Moreover, we provide insight into how prompt engineering can enhance the accuracy of some tasks.