Czech Technical University in Prague, Czech Republic
Abstract:Deep learning has proved particularly useful for semantic segmentation, a fundamental image analysis task. However, the standard deep learning methods need many training images with ground-truth pixel-wise annotations, which are usually laborious to obtain and, in some cases (e.g., medical images), require domain expertise. Therefore, instead of pixel-wise annotations, we focus on image annotations that are significantly easier to acquire but still informative, namely the size of foreground objects. We define the object size as the maximum distance between a foreground pixel and the background. We propose an algorithm for training a deep segmentation network from a dataset of a few pixel-wise annotated images and many images with known object sizes. The algorithm minimizes a discrete (non-differentiable) loss function defined over the object sizes by sampling the gradient and then using the standard back-propagation algorithm. We study the performance of our approach in terms of training time and generalization error.
Abstract:In learning from label proportions (LLP), the instances are grouped into bags, and the task is to learn an instance classifier given relative class proportions in training bags. LLP is useful when obtaining individual instance labels is impossible or costly. In this work, we focus on the case of small bags, which allows designing more efficient algorithms by explicitly considering all consistent label combinations. In particular, we propose an EM algorithm alternating between optimizing a general neural network instance classifier and incorporating bag-level annotations. In comparison to existing deep LLP methods, our approach converges faster to a comparable or better solution. Several experiments were performed on two different datasets.
Abstract:Infertility is becoming an issue for an increasing number of couples. The most common solution, in vitro fertilization, requires embryologists to carefully examine light microscopy images of human oocytes to determine their developmental potential. We propose an automatic system to improve the speed, repeatability, and accuracy of this process. We first localize individual oocytes and identify their principal components using CNN (U-Net) segmentation. We calculate several descriptors based on geometry and texture. The final step is an SVM classifier. Both the segmentation and classification training are based on expert annotations. The presented approach leads to the classification accuracy of 70%.