Abstract:The evolution of Visual Large Language Models (VLLMs) has revolutionized the automatic understanding of Visually Rich Documents (VRDs), which contain both textual and visual elements. Although VLLMs excel in Visual Question Answering (VQA) on multi-page VRDs, their ability to detect unanswerable questions is still an open research question. Our research delves into the robustness of the VLLMs to plausible yet unanswerable questions, i.e., questions that appear valid but cannot be answered due to subtle corruptions caused by swaps between related concepts or plausible question formulations. Corruptions are generated by replacing the original natural language entities with other ones of the same type, belonging to different document elements, and in different layout positions or pages of the related document. To this end, we present VRD-UQA (VISUALLY RICH DOCUMENT UNANSWERABLE QUESTION ANSWERING), a benchmark for evaluating VLLMs' resilience to plausible yet unanswerable questions across multiple dimensions. It automatically alters the questions of existing VQA datasets consisting of multi-page VRDs, verifies their unanswerability using a VLLM-as-a-judge approach, and then thoroughly evaluates VLLMs' performance. Experiments, run on 12 models, analyze: (1) The VLLMs' accuracy in detecting unanswerable questions at both page and document levels; (2) The effect of different types of corruption (NLP entity, document element, layout); (3) The effectiveness of different knowledge injection strategies based on in-context learning (OCR, multi-page selection, or the possibility of unanswerability). Our findings reveal VLLMs' limitations and demonstrate that VRD-UQA can serve as an evaluation framework for developing resilient document VQA systems.
Abstract:Shapley Values are concepts established for eXplainable AI. They are used to explain black-box predictive models by quantifying the features' contributions to the model's outcomes. Since computing the exact Shapley Values is known to be computationally intractable on real-world datasets, neural estimators have emerged as alternative, more scalable approaches to get approximated Shapley Values estimates. However, experiments with neural estimators are currently hard to replicate as algorithm implementations, explainer evaluators, and results visualizations are neither standardized nor promptly usable. To bridge this gap, we present BONES, a new benchmark focused on neural estimation of Shapley Value. It provides researchers with a suite of state-of-the-art neural and traditional estimators, a set of commonly used benchmark datasets, ad hoc modules for training black-box models, as well as specific functions to easily compute the most popular evaluation metrics and visualize results. The purpose is to simplify XAI model usage, evaluation, and comparison. In this paper, we showcase BONES results and visualizations for XAI model benchmarking on both tabular and image data. The open-source library is available at the following link: https://github.com/DavideNapolitano/BONES.
Abstract:The Document-based Visual Question Answering competition addresses the automatic detection of parent-child relationships between elements in multi-page documents. The goal is to identify the document elements that answer a specific question posed in natural language. This paper describes the PoliTo's approach to addressing this task, in particular, our best solution explores a text-only approach, leveraging an ad hoc sampling strategy. Specifically, our approach leverages the Masked Language Modeling technique to fine-tune a BERT model, focusing on sentences containing sensitive keywords that also occur in the questions, such as references to tables or images. Thanks to the effectiveness of this approach, we are able to achieve high performance compared to baselines, demonstrating how our solution contributes positively to this task.