Abstract:The reconstruction of three-dimensional dynamic scenes is a well-established yet challenging task within the domain of computer vision. In this paper, we propose a novel approach that combines the domains of 3D geometry reconstruction and appearance estimation for physically based rendering and present a system that is able to perform both tasks for fabrics, utilizing only a single monocular RGB video sequence as input. In order to obtain realistic and high-quality deformations and renderings, a physical simulation of the cloth geometry and differentiable rendering are employed. In this paper, we introduce two novel regularization terms for the 3D reconstruction task that improve the plausibility of the reconstruction by addressing the depth ambiguity problem in monocular video. In comparison with the most recent methods in the field, we have reduced the error in the 3D reconstruction by a factor of 2.64 while requiring a medium runtime of 30 min per scene. Furthermore, the optimized motion achieves sufficient quality to perform an appearance estimation of the deforming object, recovering sharp details from this single monocular RGB video.
Abstract:Grading student assignments in STEM courses is a laborious and repetitive task for tutors, often requiring a week to assess an entire class. For students, this delay of feedback prevents iterating on incorrect solutions, hampers learning, and increases stress when exercise scores determine admission to the final exam. Recent advances in AI-assisted education, such as automated grading and tutoring systems, aim to address these challenges by providing immediate feedback and reducing grading workload. However, existing solutions often fall short due to privacy concerns, reliance on proprietary closed-source models, lack of support for combining Markdown, LaTeX and Python code, or excluding course tutors from the grading process. To overcome these limitations, we introduce PyEvalAI, an AI-assisted evaluation system, which automatically scores Jupyter notebooks using a combination of unit tests and a locally hosted language model to preserve privacy. Our approach is free, open-source, and ensures tutors maintain full control over the grading process. A case study demonstrates its effectiveness in improving feedback speed and grading efficiency for exercises in a university-level course on numerics.
Abstract:3D reconstruction of dynamic scenes is a long-standing problem in computer graphics and increasingly difficult the less information is available. Shape-from-Template (SfT) methods aim to reconstruct a template-based geometry from RGB images or video sequences, often leveraging just a single monocular camera without depth information, such as regular smartphone recordings. Unfortunately, existing reconstruction methods are either unphysical and noisy or slow in optimization. To solve this problem, we propose a novel SfT reconstruction algorithm for cloth using a pre-trained neural surrogate model that is fast to evaluate, stable, and produces smooth reconstructions due to a regularizing physics simulation. Differentiable rendering of the simulated mesh enables pixel-wise comparisons between the reconstruction and a target video sequence that can be used for a gradient-based optimization procedure to extract not only shape information but also physical parameters such as stretching, shearing, or bending stiffness of the cloth. This allows to retain a precise, stable, and smooth reconstructed geometry while reducing the runtime by a factor of 400-500 compared to $\phi$-SfT, a state-of-the-art physics-based SfT approach.