Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:Markov Chain Monte Carlo (MCMC) algorithms are a workhorse of probabilistic modeling and inference, but are difficult to debug, and are prone to silent failure if implemented naively. We outline several strategies for testing the correctness of MCMC algorithms. Specifically, we advocate writing code in a modular way, where conditional probability calculations are kept separate from the logic of the sampler. We discuss strategies for both unit testing and integration testing. As a running example, we show how a Python implementation of Gibbs sampling for a mixture of Gaussians model can be tested.

Via