Abstract:As AI systems evolve from static tools to dynamic agents, traditional categorical governance frameworks -- based on fixed risk tiers, levels of autonomy, or human oversight models -- are increasingly insufficient on their own. Systems built on foundation models, self-supervised learning, and multi-agent architectures increasingly blur the boundaries that categories were designed to police. In this Perspective, we make the case for dimensional governance: a framework that tracks how decision authority, process autonomy, and accountability (the 3As) distribute dynamically across human-AI relationships. A critical advantage of this approach is its ability to explicitly monitor system movement toward and across key governance thresholds, enabling preemptive adjustments before risks materialize. This dimensional approach provides the necessary foundation for more adaptive categorization, enabling thresholds and classifications that can evolve with emerging capabilities. While categories remain essential for decision-making, building them upon dimensional foundations allows for context-specific adaptability and stakeholder-responsive governance that static approaches cannot achieve. We outline key dimensions, critical trust thresholds, and practical examples illustrating where rigid categorical frameworks fail -- and where a dimensional mindset could offer a more resilient and future-proof path forward for both governance and innovation at the frontier of artificial intelligence.
Abstract:As artificial intelligence transforms public sector operations, governments struggle to integrate technological innovations into coherent systems for effective service delivery. This paper introduces the Algorithmic State Architecture (ASA), a novel four-layer framework conceptualising how Digital Public Infrastructure, Data-for-Policy, Algorithmic Government/Governance, and GovTech interact as an integrated system in AI-enabled states. Unlike approaches that treat these as parallel developments, ASA positions them as interdependent layers with specific enabling relationships and feedback mechanisms. Through comparative analysis of implementations in Estonia, Singapore, India, and the UK, we demonstrate how foundational digital infrastructure enables systematic data collection, which powers algorithmic decision-making processes, ultimately manifesting in user-facing services. Our analysis reveals that successful implementations require balanced development across all layers, with particular attention to integration mechanisms between them. The framework contributes to both theory and practice by bridging previously disconnected domains of digital government research, identifying critical dependencies that influence implementation success, and providing a structured approach for analysing the maturity and development pathways of AI-enabled government systems.