Abstract:A passive radar system uses one or more so-called Illuminators of Opportunity (IO) to detect and localize targets. In such systems, a reference channel is often used at each receiving node to capture the transmitted IO signal, while targets are detected using the main surveillance channel. The purpose of the present contribution is to analyze a method for estimating the target parameters in such a system. Specifically, we quantify the additional error contribution due to not knowing the transmitted IO waveform perfectly. A sufficient condition for this error to be negligible as compared to errors due to clutter and noise in the surveillance channel is then given.
Abstract:This paper deals with the mathematical modeling and compensation of stochastic discrete time clock jitter in Analog-to-Digital Converters (ADCs). Two novel, computationally efficient de-jittering sample pilots-based algorithms for baseband signals are proposed: one consisting in solving a sequence of weighted least-squares problems and another that fully leverages the correlated jitter structure in a Kalman filter-type routine. Alongside, a comprehensive and rigorous mathematical analysis of the linearization errors committed is presented, and the work is complemented with extensive synthetic simulations and performance benchmarking with the scope of gauging and stress-testing the techniques in different scenarios.