Abstract:Pixel-level feature attributions are an important tool in eXplainable AI for Computer Vision (XCV), providing visual insights into how image features influence model predictions. The Owen formula for hierarchical Shapley values has been widely used to interpret machine learning (ML) models and their learned representations. However, existing hierarchical Shapley approaches do not exploit the multiscale structure of image data, leading to slow convergence and weak alignment with the actual morphological features. Moreover, no prior Shapley method has leveraged data-aware hierarchies for Computer Vision tasks, leaving a gap in model interpretability of structured visual data. To address this, this paper introduces ShapBPT, a novel data-aware XCV method based on the hierarchical Shapley formula. ShapBPT assigns Shapley coefficients to a multiscale hierarchical structure tailored for images, the Binary Partition Tree (BPT). By using this data-aware hierarchical partitioning, ShapBPT ensures that feature attributions align with intrinsic image morphology, effectively prioritizing relevant regions while reducing computational overhead. This advancement connects hierarchical Shapley methods with image data, providing a more efficient and semantically meaningful approach to visual interpretability. Experimental results confirm ShapBPT's effectiveness, demonstrating superior alignment with image structures and improved efficiency over existing XCV methods, and a 20-subject user study confirming that ShapBPT explanations are preferred by humans.
Abstract:Generative models based on variational autoencoders are a popular technique for detecting anomalies in images in a semi-supervised context. A common approach employs the anomaly score to detect the presence of anomalies, and it is known to reach high level of accuracy on benchmark datasets. However, since anomaly scores are computed from reconstruction disparities, they often obscure the detection of various spurious features, raising concerns regarding their actual efficacy. This case study explores the robustness of an anomaly detection system based on variational autoencoder generative models through the use of eXplainable AI methods. The goal is to get a different perspective on the real performances of anomaly detectors that use reconstruction differences. In our case study we discovered that, in many cases, samples are detected as anomalous for the wrong or misleading factors.
Abstract:We investigate the use of a stratified sampling approach for LIME Image, a popular model-agnostic explainable AI method for computer vision tasks, in order to reduce the artifacts generated by typical Monte Carlo sampling. Such artifacts are due to the undersampling of the dependent variable in the synthetic neighborhood around the image being explained, which may result in inadequate explanations due to the impossibility of fitting a linear regressor on the sampled data. We then highlight a connection with the Shapley theory, where similar arguments about undersampling and sample relevance were suggested in the past. We derive all the formulas and adjustment factors required for an unbiased stratified sampling estimator. Experiments show the efficacy of the proposed approach.