Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Abstract:Explainable machine learning can help to discover new physical relationships for material properties. To understand the material properties that govern the activation energy for oxygen diffusion in perovskites and pyrochlores, we build a database of experimental activation energies and apply a grouping algorithm to the material property features. These features are then used to fit seven different machine learning models. An ensemble consensus determines that the most important features for predicting the activation energy are the ionicity of the A-site bond and the partial pressure of oxygen for perovskites. For pyrochlores, the two most important features are the A-site $s$ valence electron count and the B-site electronegativity. The most important features are all constructed using the weighted averages of elemental metal properties, despite weighted averages of the constituent binary oxides being included in our feature set. This is surprising because the material properties of the constituent oxides are more similar to the experimentally measured properties of perovskites and pyrochlores than the features of the metals that are chosen. The easy-to-measure features identified in this work enable rapid screening for new materials with fast oxide-ion diffusivity.
Abstract:While machine learning (ML) interatomic potentials (IPs) are able to achieve accuracies nearing the level of noise inherent in the first-principles data to which they are trained, it remains to be shown if their increased complexities are strictly necessary for constructing high-quality IPs. In this work, we introduce a new MLIP framework which blends the simplicity of spline-based MEAM (s-MEAM) potentials with the flexibility of a neural network (NN) architecture. The proposed framework, which we call the spline-based neural network potential (s-NNP), is a simplified version of the traditional NNP that can be used to describe complex datasets in a computationally efficient manner. We demonstrate how this framework can be used to probe the boundary between classical and ML IPs, highlighting the benefits of key architectural changes. Furthermore, we show that using spline filters for encoding atomic environments results in a readily interpreted embedding layer which can be coupled with modifications to the NN to incorporate expected physical behaviors and improve overall interpretability. Finally, we test the flexibility of the spline filters, observing that they can be shared across multiple chemical systems in order to provide a convenient reference point from which to begin performing cross-system analyses.