Abstract:With the integration of renewable sources in electricity distribution networks, the need to develop intelligent mechanisms for balancing the energy market has arisen. In the absence of such mechanisms, the energy market may face imbalances that can lead to power outages, financial losses or instability at the grid level. In this context, the grouping of microgrids into optimal coalitions that can absorb energy from the market during periods of surplus or supply energy to the market during periods of is a key aspect in the efficient management of distribution networks. In this article, we propose a method that identify an optimal microgrids coalition capable of addressing the dynamics of the energy market. The proposed method models the problem of identifying the optimal coalition as an optimization problem that it solves by combining a strategy inspired by cooperative game theory with a memetic algorithm. An individual is represented as a coalition of microgrids and the evolution of population of individuals over generations is assured by recombination and mutation. The fitness function is defined as the difference between the total value generated by the coalition and a penalty applied to the coalition when the energy traded by coalition exceeds the energy available/demanded on/by the energy market. The value generated by the coalition is calculated based on the profit obtained by the collation if it sells energy on the market during periods of deficit or the savings obtained by the coalition if it buys energy on the market during periods of surplus and the costs associated with the trading process. This value is divided equitably among the coalition members, according to the Shapley value, which considers the contribution of each one to the formation of collective value.
Abstract:Economic and policy factors are driving the continuous increase in the adoption and usage of electrical vehicles (EVs). However, despite being a cleaner alternative to combustion engine vehicles, EVs have negative impacts on the lifespan of microgrid equipment and energy balance due to increased power demand and the timing of their usage. In our view grid management should leverage on EVs scheduling flexibility to support local network balancing through active participation in demand response programs. In this paper, we propose a model-free solution, leveraging Deep Q-Learning to schedule the charging and discharging activities of EVs within a microgrid to align with a target energy profile provided by the distribution system operator. We adapted the Bellman Equation to assess the value of a state based on specific rewards for EV scheduling actions and used a neural network to estimate Q-values for available actions and the epsilon-greedy algorithm to balance exploitation and exploration to meet the target energy profile. The results are promising showing that the proposed solution can effectively schedule the EVs charging and discharging actions to align with the target profile with a Person coefficient of 0.99, handling effective EVs scheduling situations that involve dynamicity given by the e-mobility features, relying only on data with no knowledge of EVs and microgrid dynamics.
Abstract:The rise of renewables coincides with the shift towards Electrical Vehicles (EVs) posing technical and operational challenges for the energy balance of the local grid. Nowadays, the energy grid cannot deal with a spike in EVs usage leading to a need for more coordinated and grid aware EVs charging and discharging strategies. However, coordinating power flow from multiple EVs into the grid requires sophisticated algorithms and load-balancing strategies as the complexity increases with more control variables and EVs, necessitating large optimization and decision search spaces. In this paper, we propose an EVs fleet coordination model for the day ahead aiming to ensure a reliable energy supply and maintain a stable local grid, by utilizing EVs to store surplus energy and discharge it during periods of energy deficit. The optimization problem is addressed using Harris Hawks Optimization (HHO) considering criteria related to energy grid balancing, time usage preference, and the location of EV drivers. The EVs schedules, associated with the position of individuals from the population, are adjusted through exploration and exploitation operations, and their technical and operational feasibility is ensured, while the rabbit individual is updated with a non-dominated EV schedule selected per iteration using a roulette wheel algorithm. The solution is evaluated within the framework of an e-mobility service in Terni city. The results indicate that coordinated charging and discharging of EVs not only meet balancing service requirements but also align with user preferences with minimal deviations.
Abstract:In this paper we propose a Long Short-Term Memory Network based method to forecast the energy consumption in public buildings, based on past measurements. Our approach consists of three main steps: data processing step, training and validation step, and finally the forecasting step. We tested our method on a data set consisting of measurements taken every half an hour from the main building of the National Archives of the United Kingdom, in Kew and as evaluation metrics we have used Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE).
Abstract:This paper analyzes comparatively the performance of Random Forests and Gradient Boosting algorithms in the field of forecasting the energy consumption based on historical data. The two algorithms are applied in order to forecast the energy consumption individually, and then combined together by using a Weighted Average Ensemble Method. The comparison among the achieved experimental results proves that the Weighted Average Ensemble Method provides more accurate results than each of the two algorithms applied alone.