Abstract:In visual recognition, both the object of interest (referred to as foreground, FG, for simplicity) and its surrounding context (background, BG) play an important role. However, standard supervised learning often leads to unintended over-reliance on the BG, known as shortcut learning of spurious correlations, limiting model robustness in real-world deployment settings. In the literature, the problem is mainly addressed by suppressing the BG, sacrificing context information for improved generalization. We propose RCOR -- Robust Context-Aware Object Recognition -- the first approach that jointly achieves robustness and context-awareness without compromising either. RCOR treats localization as an integral part of recognition to decouple object-centric and context-aware modelling, followed by a robust, non-parametric fusion. It improves the performance of both supervised models and VLM on datasets with both in-domain and out-of-domain BG, even without fine-tuning. The results confirm that localization before recognition is now possible even in complex scenes as in ImageNet-1k.
Abstract:In image recognition, both foreground (FG) and background (BG) play an important role; however, standard deep image recognition often leads to unintended over-reliance on the BG, limiting model robustness in real-world deployment settings. Current solutions mainly suppress the BG, sacrificing BG information for improved generalization. We propose "Segment to Recognize Robustly" (S2R^2), a novel recognition approach which decouples the FG and BG modelling and combines them in a simple, robust, and interpretable manner. S2R^2 leverages recent advances in zero-shot segmentation to isolate the FG and the BG before or during recognition. By combining FG and BG, potentially also with a standard full-image classifier, S2R^2 achieves state-of-the-art results on in-domain data while maintaining robustness to BG shifts. The results confirm that segmentation before recognition is now possible.