Department of Mechanical Engineering, University of Thessaly
Abstract:In the era of big data, machine learning (ML) has become a powerful tool in various fields, notably impacting structural dynamics. ML algorithms offer advantages by modeling physical phenomena based on data, even in the absence of underlying mechanisms. However, uncertainties such as measurement noise and modeling errors can compromise the reliability of ML predictions, highlighting the need for effective uncertainty awareness to enhance prediction robustness. This paper presents a comprehensive review on navigating uncertainties in ML, categorizing uncertainty-aware approaches into probabilistic methods (including Bayesian and frequentist perspectives) and non-probabilistic methods (such as interval learning and fuzzy learning). Bayesian neural networks, known for their uncertainty quantification and nonlinear mapping capabilities, are emphasized for their superior performance and potential. The review covers various techniques and methodologies for addressing uncertainties in ML, discussing fundamentals and implementation procedures of each method. While providing a concise overview of fundamental concepts, the paper refrains from in-depth critical explanations. Strengths and limitations of each approach are examined, along with their applications in structural dynamic forward problems like response prediction, sensitivity assessment, and reliability analysis, and inverse problems like system identification, model updating, and damage identification. Additionally, the review identifies research gaps and suggests future directions for investigations, aiming to provide comprehensive insights to the research community. By offering an extensive overview of both probabilistic and non-probabilistic approaches, this review aims to assist researchers and practitioners in making informed decisions when utilizing ML techniques to address uncertainties in structural dynamic problems.
Abstract:Machine Learning (ML) has widely been used for modeling and predicting physical systems. These techniques offer high expressive power and good generalizability for interpolation within observed data sets. However, the disadvantage of black-box models is that they underperform under blind conditions since no physical knowledge is incorporated. Physics-based ML aims to address this problem by retaining the mathematical flexibility of ML techniques while incorporating physics. In accord, this paper proposes to embed mechanics-based models into the mean function of a Gaussian Process (GP) model and characterize potential discrepancies through kernel machines. A specific class of kernel function is promoted, which has a connection with the gradient of the physics-based model with respect to the input and parameters and shares similarity with the exact Autocovariance function of linear dynamical systems. The spectral properties of the kernel function enable considering dominant periodic processes originating from physics misspecification. Nevertheless, the stationarity of the kernel function is a difficult hurdle in the sequential processing of long data sets, resolved through hierarchical Bayesian techniques. This implementation is also advantageous to mitigate computational costs, alleviating the scalability of GPs when dealing with sequential data. Using numerical and experimental examples, potential applications of the proposed method to structural dynamics inverse problems are demonstrated.