Abstract:This study examines the digital value chain in automotive manufacturing, focusing on the identification, software flashing, customization, and commissioning of electronic control units in vehicle networks. A novel precedence graph design is proposed to optimize this process chain using an automated scheduling algorithm that employs mixed integer linear programming techniques. The results show significant improvements in key metrics. The algorithm reduces the number of production stations equipped with expensive hardware and software to execute digital value chain processes, while increasing capacity utilization through efficient scheduling and reduced idle time. Task parallelization is optimized, resulting in streamlined workflows and increased throughput. Compared to the traditional method, the automated approach has reduced preparation time by 50% and reduced scheduling activities, as it now takes two minutes to create the precedence graph. The flexibility of the algorithm's constraints allows for vehicle-specific configurations while maintaining high responsiveness, eliminating backup stations and facilitating the integration of new topologies. Automated scheduling significantly outperforms manual methods in efficiency, functionality, and adaptability.
Abstract:The present study examines the effectiveness of applying Artificial Intelligence methods in an automotive production environment to predict unknown lead times in a non-cycle-controlled production area. Data structures are analyzed to identify contextual features and then preprocessed using one-hot encoding. Methods selection focuses on supervised machine learning techniques. In supervised learning methods, regression and classification methods are evaluated. Continuous regression based on target size distribution is not feasible. Classification methods analysis shows that Ensemble Learning and Support Vector Machines are the most suitable. Preliminary study results indicate that gradient boosting algorithms LightGBM, XGBoost, and CatBoost yield the best results. After further testing and extensive hyperparameter optimization, the final method choice is the LightGBM algorithm. Depending on feature availability and prediction interval granularity, relative prediction accuracies of up to 90% can be achieved. Further tests highlight the importance of periodic retraining of AI models to accurately represent complex production processes using the database. The research demonstrates that AI methods can be effectively applied to highly variable production data, adding business value by providing an additional metric for various control tasks while outperforming current non AI-based systems.