Abstract:We present a full-stack emergency vehicle (EV) siren detection system designed for real-time deployment on embedded hardware. The proposed approach is based on E2PANNs, a fine-tuned convolutional neural network derived from EPANNs, and optimized for binary sound event detection under urban acoustic conditions. A key contribution is the creation of curated and semantically structured datasets - AudioSet-EV, AudioSet-EV Augmented, and Unified-EV - developed using a custom AudioSet-Tools framework to overcome the low reliability of standard AudioSet annotations. The system is deployed on a Raspberry Pi 5 equipped with a high-fidelity DAC+microphone board, implementing a multithreaded inference engine with adaptive frame sizing, probability smoothing, and a decision-state machine to control false positive activations. A remote WebSocket interface provides real-time monitoring and facilitates live demonstration capabilities. Performance is evaluated using both framewise and event-based metrics across multiple configurations. Results show the system achieves low-latency detection with improved robustness under realistic audio conditions. This work demonstrates the feasibility of deploying IoS-compatible SED solutions that can form distributed acoustic monitoring networks, enabling collaborative emergency vehicle tracking across smart city infrastructures through WebSocket connectivity on low-cost edge devices.
Abstract:Spoken language datasets are vital for advancing linguistic research, Natural Language Processing, and speech technology. However, resources dedicated to Italian, a linguistically rich and diverse Romance language, remain underexplored compared to major languages like English or Mandarin. This survey provides a comprehensive analysis of 66 spoken Italian datasets, highlighting their characteristics, methodologies, and applications. The datasets are categorized by speech type, source and context, and demographic and linguistic features, with a focus on their utility in fields such as Automatic Speech Recognition, emotion detection, and education. Challenges related to dataset scarcity, representativeness, and accessibility are discussed alongside recommendations for enhancing dataset creation and utilization. The full dataset inventory is publicly accessible via GitHub and archived on Zenodo, serving as a valuable resource for researchers and developers. By addressing current gaps and proposing future directions, this work aims to support the advancement of Italian speech technologies and linguistic research.
Abstract:This paper explores a structured application of the One-Class approach and the One-Class-One-Network model for supervised classification tasks, focusing on vowel phonemes classification and speakers recognition for the Automatic Speech Recognition (ASR) domain. For our case-study, the ASR model runs on a proprietary sensing and lightning system, exploited to monitor acoustic and air pollution on urban streets. We formalize combinations of pseudo-Neural Architecture Search and Hyper-Parameters Tuning experiments, using an informed grid-search methodology, to achieve classification accuracy comparable to nowadays most complex architectures, delving into the speaker recognition and energy efficiency aspects. Despite its simplicity, our model proposal has a very good chance to generalize the language and speaker genders context for widespread applicability in computational constrained contexts, proved by relevant statistical and performance metrics. Our experiments code is openly accessible on our GitHub.
Abstract:This paper introduces to a structured application of the One-Class approach and the One-Class-One-Network model for supervised classification tasks, specifically addressing a vowel phonemes classification case study within the Automatic Speech Recognition research field. Through pseudo-Neural Architecture Search and Hyper-Parameters Tuning experiments conducted with an informed grid-search methodology, we achieve classification accuracy comparable to nowadays complex architectures (90.0 - 93.7%). Despite its simplicity, our model prioritizes generalization of language context and distributed applicability, supported by relevant statistical and performance metrics. The experiments code is openly available at our GitHub.