Abstract:Artificial Intelligence (AI) and Machine Learning (ML) have been prevalent in particle physics for over three decades, shaping many aspects of High Energy Physics (HEP) analyses. As AI's influence grows, it is essential for physicists $\unicode{x2013}$ as both researchers and informed citizens $\unicode{x2013}$ to critically examine its foundations, misconceptions, and impact. This paper explores AI definitions, examines how ML differs from traditional programming, and provides a brief review of AI/ML applications in HEP, highlighting promising trends such as Simulation-Based Inference, uncertainty-aware machine learning, and Fast ML for anomaly detection. Beyond physics, it also addresses the broader societal harms of AI systems, underscoring the need for responsible engagement. Finally, it stresses the importance of adapting research practices to an evolving AI landscape, ensuring that physicists not only benefit from the latest tools but also remain at the forefront of innovation.
Abstract:Machine learning is an important research area in particle physics, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications in particle and event identification and reconstruction in the 2010s. In this document we discuss promising future research and development areas in machine learning in particle physics with a roadmap for their implementation, software and hardware resource requirements, collaborative initiatives with the data science community, academia and industry, and training the particle physics community in data science. The main objective of the document is to connect and motivate these areas of research and development with the physics drivers of the High-Luminosity Large Hadron Collider and future neutrino experiments and identify the resource needs for their implementation. Additionally we identify areas where collaboration with external communities will be of great benefit.