Abstract:Tournaments are widely used models to represent pairwise dominance between candidates, alternatives, or teams. We study the problem of providing certified explanations for why a candidate appears among the winners under various tournament rules. To this end, we identify minimal supports, minimal sub-tournaments in which the candidate is guaranteed to win regardless of how the rest of the tournament is completed (that is, the candidate is a necessary winner of the sub-tournament). This notion corresponds to an abductive explanation for the question,"Why does the winner win the tournament", a central concept in formal explainable AI. We focus on common tournament solutions: the top cycle, the uncovered set, the Copeland rule, the Borda rule, the maximin rule, and the weighted uncovered set. For each rule we determine the size of the smallest minimal supports, and we present polynomial-time algorithms to compute them for all but the weighted uncovered set, for which the problem is NP-complete. Finally, we show how minimal supports can serve to produce compact, certified, and intuitive explanations.
Abstract:We view voting rules as classifiers that assign a winner (a class) to a profile of voters' preferences (an instance). We propose to apply techniques from formal explainability, most notably abductive and contrastive explanations, to identify minimal subsets of a preference profile that either imply the current winner or explain why a different candidate was not elected. Formal explanations turn out to have strong connections with classical problems studied in computational social choice such as bribery, possible and necessary winner identification, and preference learning. We design algorithms for computing abductive and contrastive explanations for scoring rules. For the Borda rule, we find a lower bound on the size of the smallest abductive explanations, and we conduct simulations to identify correlations between properties of preference profiles and the size of their smallest abductive explanations.