Abstract:Table structure recognition is a key task in document analysis. However, the geometric deformation in deformed tables causes a weak correlation between content information and structure, resulting in downstream tasks not being able to obtain accurate content information. To obtain fine-grained spatial coordinates of cells, we propose the OG-HFYOLO model, which enhances the edge response by Gradient Orientation-aware Extractor, combines a Heterogeneous Kernel Cross Fusion module and a scale-aware loss function to adapt to multi-scale objective features, and introduces mask-driven non-maximal suppression in the post-processing, which replaces the traditional bounding box suppression mechanism. Furthermore, we also propose a data generator, filling the gap in the dataset for fine-grained deformation table cell spatial coordinate localization, and derive a large-scale dataset named Deformation Wired Table (DWTAL). Experiments show that our proposed model demonstrates excellent segmentation accuracy on all mainstream instance segmentation models. The dataset and the source code are open source: https://github.com/justliulong/OGHFYOLO.
Abstract:Table structure recognition aims to parse tables in unstructured data into machine-understandable formats. Recent methods address this problem through a two-stage process or optimized one-stage approaches. However, these methods either require multiple networks to be serially trained and perform more time-consuming sequential decoding, or rely on complex post-processing algorithms to parse the logical structure of tables. They struggle to balance cross-scenario adaptability, robustness, and computational efficiency. In this paper, we propose a one-stage end-to-end table structure parsing network called TableCenterNet. This network unifies the prediction of table spatial and logical structure into a parallel regression task for the first time, and implicitly learns the spatial-logical location mapping laws of cells through a synergistic architecture of shared feature extraction layers and task-specific decoding. Compared with two-stage methods, our method is easier to train and faster to infer. Experiments on benchmark datasets show that TableCenterNet can effectively parse table structures in diverse scenarios and achieve state-of-the-art performance on the TableGraph-24k dataset. Code is available at https://github.com/dreamy-xay/TableCenterNet.