Abstract:This paper presents an end-to-end, IoT-enabled robotic system for the non-destructive, real-time, and spatially-resolved mapping of grape yield and quality (Brix, Acidity) in vineyards. The system features a comprehensive analytical pipeline that integrates two key modules: a high-performance model for grape bunch detection and weight estimation, and a novel deep learning framework for quality assessment from hyperspectral (HSI) data. A critical barrier to in-field HSI is the ``domain shift" caused by variable illumination. To overcome this, our quality assessment is powered by the Light-Invariant Spectral Autoencoder (LISA), a domain-adversarial framework that learns illumination-invariant features from uncalibrated data. We validated the system's robustness on a purpose-built HSI dataset spanning three distinct illumination domains: controlled artificial lighting (lab), and variable natural sunlight captured in the morning and afternoon. Results show the complete pipeline achieves a recall (0.82) for bunch detection and a $R^2$ (0.76) for weight prediction, while the LISA module improves quality prediction generalization by over 20% compared to the baselines. By combining these robust modules, the system successfully generates high-resolution, georeferenced data of both grape yield and quality, providing actionable, data-driven insights for precision viticulture.
Abstract:Unmanned Aerial Vehicles (UAVs) combined with Hyperspectral imaging (HSI) offer potential for environmental and agricultural applications by capturing detailed spectral information that enables the prediction of invisible features like biochemical leaf properties. However, the data-intensive nature of HSI poses challenges for remote devices, which have limited computational resources and storage. This paper introduces an Online Hyperspectral Simple Linear Iterative Clustering algorithm (OHSLIC) framework for real-time tree phenotype segmentation. OHSLIC reduces inherent noise and computational demands through adaptive incremental clustering and a lightweight neural network, which phenotypes trees using leaf contents such as chlorophyll, carotenoids, and anthocyanins. A hyperspectral dataset is created using a custom simulator that incorporates realistic leaf parameters, and light interactions. Results demonstrate that OHSLIC achieves superior regression accuracy and segmentation performance compared to pixel- or window-based methods while significantly reducing inference time. The method`s adaptive clustering enables dynamic trade-offs between computational efficiency and accuracy, paving the way for scalable edge-device deployment in HSI applications.