Abstract:This study evaluates two leading approaches for teaching construction robots new skills to understand their applicability for construction automation: a Vision-Language-Action (VLA) model and Reinforcement Learning (RL) methods. The goal is to understand both task performance and the practical effort needed to deploy each approach on real jobs. The authors developed two teleoperation interfaces to control the robots and collect the demonstrations needed, both of which proved effective for training robots for long-horizon and dexterous tasks. In addition, the authors conduct a three-stage evaluation. First, the authors compare a Multi-Layer Perceptron (MLP) policy with a Deep Q-network (DQN) imitation model to identify the stronger RL baseline, focusing on model performance, generalization, and a pick-up experiment. Second, three different VLA models are trained in two different scenarios and compared with each other. Third, the authors benchmark the selected RL baseline against the VLA model using computational and sample-efficiency measures and then a robot experiment on a multi-stage panel installation task that includes transport and installation. The VLA model demonstrates strong generalization and few-shot capability, achieving 60% and 100% success in the pickup phase. In comparison, DQN can be made robust but needs additional noise during tuning, which increases the workload. Overall, the findings indicate that VLA offers practical advantages for changing tasks by reducing programming effort and enabling useful performance with minimal data, while DQN provides a viable baseline when sufficient tuning effort is acceptable.
Abstract:Artificial intelligence (AI) and robotics research and implementation emerged in the architecture, engineering, and construction (AEC) industry to positively impact project efficiency and effectiveness concerns such as safety, productivity, and quality. This shift, however, warrants the need for ethical considerations of AI and robotics adoption due to its potential negative impacts on aspects such as job security, safety, and privacy. Nevertheless, this did not receive sufficient attention, particularly within the academic community. This research systematically reviews AI and robotics research through the lens of ethics in the AEC community for the past five years. It identifies nine key ethical issues namely job loss, data privacy, data security, data transparency, decision-making conflict, acceptance and trust, reliability and safety, fear of surveillance, and liability, by summarizing existing literature and filtering it further based on its AEC relevance. Furthermore, thirteen research topics along the process were identified based on existing AEC studies that had direct relevance to the theme of ethics in general and their parallels are further discussed. Finally, the current challenges and knowledge gaps are discussed and seven specific future research directions are recommended. This study not only signifies more stakeholder awareness of this important topic but also provides imminent steps towards safer and more efficient realization.