Abstract:Industry 4.0 is transforming manufacturing and logistics by integrating robots into shared human environments, such as factories, warehouses, and healthcare facilities. However, the risk of human-robot collisions, especially in Non-Line-of-Sight (NLoS) scenarios like around corners, remains a critical challenge. Existing solutions, such as vision-based and LiDAR systems, often fail under occlusion, lighting constraints, or privacy concerns, while RF-based systems are limited by range and accuracy. To address these limitations, we propose mmMirror, a novel system leveraging a Van Atta Array-based millimeter-wave (mmWave) reconfigurable intelligent reflecting surface (IRS) for precise, device-free NLoS localization. mmMirror integrates seamlessly with existing frequency-modulated continuous-wave (FMCW) radars and offers: (i) robust NLoS localization with centimeter-level accuracy at ranges up to 3 m, (ii) seamless uplink and downlink communication between radar and IRS, (iii) support for multi-radar and multi-target scenarios via dynamic beam steering, and (iv) reduced scanning latency through adaptive time slot allocation. Implemented using commodity 24 GHz radars and a PCB-based IRS prototype, mmMirror demonstrates its potential in enabling safe human-robot interactions in dynamic and complex environments.
Abstract:The accuracy of traditional localization methods significantly degrades when the direct path between the wireless transmitter and the target is blocked or non-penetrable. This paper proposes N2LoS, a novel approach for precise non-line-of-sight (NLoS) localization using a single mmWave radar and a backscatter tag. N2LoS leverages multipath reflections from both the tag and surrounding reflectors to accurately estimate the targets position. N2LoS introduces several key innovations. First, we design HFD (Hybrid Frequency-Hopping and Direct Sequence Spread Spectrum) to detect and differentiate reflectors from the target. Second, we enhance signal-to-noise ratio (SNR) by exploiting the correlation properties of the designed signals, improving detection robustness in complex environments. Third, we propose FS-MUSIC (Frequency-Spatial Multiple Signal Classification), a super resolution algorithm that extends the traditional MUSIC method by constructing a higher-rank signal matrix, enabling the resolution of additional multipath components. We evaluate N2LoS using a 24 GHz mmWave radar with 250 MHz bandwidth in three diverse environments: a laboratory, an office, and an around-the-corner corridor. Experimental results demonstrate that N2LoS achieves median localization errors of 10.69 cm (X) and 11.98 cm (Y) at a 5 m range in the laboratory setting, showcasing its effectiveness for real-world NLoS localization.
Abstract:The current battery-powered fault detection system for vibration monitoring has a rather limited lifetime. This is because the high-frequency sampling (typically tens of kilo-Hertz) required for vibration monitoring results in high energy consumption in both the analog-to-digital (ADC) converter and wireless transmissions. This paper proposes a new fault detection architecture that can significantly reduce the energy consumption of the ADC and wireless transmission. Our inspiration for the new architecture is based on the observation that the many tens of thousand of data samples collected for fault detection are ultimately transformed into a small number of features. If we can generate these features directly without high frequency sampling, then we can avoid the the energy cost for ADC and wireless transmissions. We propose to use piezoelectric energy harvesters (which can be designed to have different frequency responses) and integrators to obtain these features in an energy-efficient manner. By using a publicly available data set for ball bearing fault detection (which was originally sampled at 51.2kHz) and piezoelectric energy harvester models, we can produce features, which when sampled at 0.33Hz, give a fault detection accuracy of 89% while reducing the sampling requirement by 4 orders-of-magnitude.