Abstract:We present ROCK (Rolling One-motor Controlled rocK), a 1 degree-of-freedom robot consisting of a round shell and an internal pendulum. An uneven shell surface enables steering by using only the movement of the pendulum, allowing for mechanically simple designs that may be feasible to scale to large quantities or small sizes. We train a control policy using reinforcement learning in simulation and deploy it onto the robot to complete a rectangular trajectory.
Abstract:Arboreal environments challenge current robots but are deftly traversed by many familiar animal locomotors such as squirrels. We present a small, 450 g robot "Pinto" developed for tree-jumping, a behavior seen in squirrels but rarely in legged robots: jumping from the ground onto a vertical tree trunk. We develop a powerful and lightweight latched series-elastic actuator using a twisted string and carbon fiber springs. We consider the effects of scaling down conventional quadrupeds and experimentally show how storing energy in a parallel-elastic fashion using a latch increases jump energy compared to series-elastic or springless strategies. By switching between series and parallel-elastic modes with our latched 5-bar leg mechanism, Pinto executes energetic jumps as well as maintains continuous control during shorter bounding motions. We also develop sprung 2-DoF arms equipped with spined grippers to grasp tree bark for high-speed perching following a jump.