Abstract:Modern automated factories increasingly run manufacturing procedures using a matrix of programmable machines, such as 3D printers, interconnected by a programmable transport system, such as a fleet of tabletop robots. To embed a manufacturing procedure into a smart factory, an operator must: (a) assign each of its processes to a machine and (b) specify how agents should transport parts between machines. The problem of embedding a manufacturing process into a smart factory is termed the Smart Factory Embedding (SFE) problem. State-of-the-art SFE solvers can only scale to factories containing a couple dozen machines. Modern smart factories, however, may contain hundreds of machines. We fill this hole by introducing the first highly scalable solution to the SFE, TS-ACES, the Traffic System based Anytime Cyclic Embedding Solver. We show that TS-ACES is complete and can scale to SFE instances based on real industrial scenarios with more than a hundred machines.
Abstract:A modern smart factory runs a manufacturing procedure using a collection of programmable machines. Typically, materials are ferried between these machines using a team of mobile robots. To embed a manufacturing procedure in a smart factory, a factory operator must a) assign its processes to the smart factory's machines and b) determine how agents should carry materials between machines. A good embedding maximizes the smart factory's throughput; the rate at which it outputs products. Existing smart factory management systems solve the aforementioned problems sequentially, limiting the throughput that they can achieve. In this paper we introduce ACES, the Anytime Cyclic Embedding Solver, the first solver which jointly optimizes the assignment of processes to machines and the assignment of paths to agents. We evaluate ACES and show that it can scale to real industrial scenarios.