Abstract:Low-resource indigenous languages often lack the parallel corpora required for effective neural machine translation (NMT). Synthetic data generation offers a practical strategy for mitigating this limitation in data-scarce settings. In this work, we augment curated parallel datasets for indigenous languages of the Americas with synthetic sentence pairs generated using a high-capacity multilingual translation model. We fine-tune a multilingual mBART model on curated-only and synthetically augmented data and evaluate translation quality using chrF++, the primary metric used in recent AmericasNLP shared tasks for agglutinative languages. We further apply language-specific preprocessing, including orthographic normalization and noise-aware filtering, to reduce corpus artifacts. Experiments on Guarani--Spanish and Quechua--Spanish translation show consistent chrF++ improvements from synthetic data augmentation, while diagnostic experiments on Aymara highlight the limitations of generic preprocessing for highly agglutinative languages.
Abstract:Multi30k is frequently cited in the multimodal machine translation (MMT) literature, offering parallel text data for training and fine-tuning deep learning models. However, it is limited to four languages: Czech, English, French, and German. This restriction has led many researchers to focus their investigations only on these languages. As a result, MMT research on diverse languages has been stalled because the official Multi30k dataset only represents European languages in Latin scripts. Previous efforts to extend Multi30k exist, but the list of supported languages, represented language families, and scripts is still very short. To address these issues, we propose MultiScript30k, a new Multi30k dataset extension for global languages in various scripts, created by translating the English version of Multi30k (Multi30k-En) using NLLB200-3.3B. The dataset consists of over \(30000\) sentences and provides translations of all sentences in Multi30k-En into Ar, Es, Uk, Zh\_Hans and Zh\_Hant. Similarity analysis shows that Multi30k extension consistently achieves greater than \(0.8\) cosine similarity and symmetric KL divergence less than \(0.000251\) for all languages supported except Zh\_Hant which is comparable to the previous Multi30k extensions ArEnMulti30k and Multi30k-Uk. COMETKiwi scores reveal mixed assessments of MultiScript30k as a translation of Multi30k-En in comparison to the related work. ArEnMulti30k scores nearly equal MultiScript30k-Ar, but Multi30k-Uk scores $6.4\%$ greater than MultiScript30k-Uk per split.