Abstract:Falls, highly common in the constantly increasing global aging population, can have a variety of negative effects on their health, well-being, and quality of life, including restricting their capabilities to conduct Activities of Daily Living (ADLs), which are crucial for one's sustenance. Timely assistance during falls is highly necessary, which involves tracking the indoor location of the elderly during their diverse navigational patterns associated with ADLs to detect the precise location of a fall. With the decreasing caregiver population on a global scale, it is important that the future of intelligent living environments can detect falls during ADLs while being able to track the indoor location of the elderly in the real world. To address these challenges, this work proposes a cost-effective and simplistic design paradigm for an Ambient Assisted Living system that can capture multimodal components of user behaviors during ADLs that are necessary for performing fall detection and indoor localization in a simultaneous manner in the real world. Proof of concept results from real-world experiments are presented to uphold the effective working of the system. The findings from two comparison studies with prior works in this field are also presented to uphold the novelty of this work. The first comparison study shows how the proposed system outperforms prior works in the areas of indoor localization and fall detection in terms of the effectiveness of its software design and hardware design. The second comparison study shows that the cost for the development of this system is the least as compared to prior works in these fields, which involved real-world development of the underlining systems, thereby upholding its cost-effective nature.
Abstract:This paper presents a multifunctional interdisciplinary framework that makes four scientific contributions towards the development of personalized ambient assisted living, with a specific focus to address the different and dynamic needs of the diverse aging population in the future of smart living environments. First, it presents a probabilistic reasoning-based mathematical approach to model all possible forms of user interactions for any activity arising from the user diversity of multiple users in such environments. Second, it presents a system that uses this approach with a machine learning method to model individual user profiles and user-specific user interactions for detecting the dynamic indoor location of each specific user. Third, to address the need to develop highly accurate indoor localization systems for increased trust, reliance, and seamless user acceptance, the framework introduces a novel methodology where two boosting approaches Gradient Boosting and the AdaBoost algorithm are integrated and used on a decision tree-based learning model to perform indoor localization. Fourth, the framework introduces two novel functionalities to provide semantic context to indoor localization in terms of detecting each user's floor-specific location as well as tracking whether a specific user was located inside or outside a given spatial region in a multi-floor-based indoor setting. These novel functionalities of the proposed framework were tested on a dataset of localization-related Big Data collected from 18 different users who navigated in 3 buildings consisting of 5 floors and 254 indoor spatial regions. The results show that this approach of indoor localization for personalized AAL that models each specific user always achieves higher accuracy as compared to the traditional approach of modeling an average user.
Abstract:COVID-19, a pandemic that the world has not seen in decades, has resulted in presenting a multitude of unprecedented challenges for student learning across the globe. The global surge in COVID-19 cases resulted in several schools, colleges, and universities closing in 2020 in almost all parts of the world and switching to online or remote learning, which has impacted student learning in different ways. This has resulted in both educators and students spending more time on the internet than ever before, which may be broadly summarized as both these groups investigating, learning, and familiarizing themselves with information, tools, applications, and frameworks to adapt to online learning. This paper takes an explorative approach to further investigate and analyze the impact of COVID-19 on such web behavior data related to online learning to interpret the associated interests, challenges, and needs. The study specifically focused on investigating Google Search-based web behavior data as Google is the most popular search engine globally. The impact of COVID-19 related to online learning-based web behavior on Google was studied for the top 20 worst affected countries in terms of the total number of COVID-19 cases, and the findings have been published as an open-access dataset. Furthermore, to interpret the trends in web behavior data related to online learning, the paper discusses a case study in terms of the impact of COVID-19 on the education system of one of these countries.
Abstract:The United States of America has been the worst affected country in terms of the number of cases and deaths on account of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or COVID-19, a highly transmissible and pathogenic coronavirus that started spreading globally in late 2019. On account of the surge of infections, accompanied by hospitalizations and deaths due to COVID-19, and lack of a definitive cure at that point, a national emergency was declared in the United States on March 13, 2020. To prevent the rapid spread of the virus, several states declared stay at home and remote work guidelines shortly after this declaration of an emergency. Such guidelines caused schools, colleges, and universities, both private and public, in all the 50-United States to switch to remote or online forms of teaching for a significant period of time. As a result, Google, the most widely used search engine in the United States, experienced a surge in online shopping of remote learning-based software, systems, applications, and gadgets by both educators and students from all the 50-United States, due to both these groups responding to the associated needs and demands related to switching to remote teaching and learning. This paper aims to investigate, analyze, and interpret these trends of Google Shopping related to remote learning that emerged since March 13, 2020, on account of COVID-19 and the subsequent remote learning adoption in almost all schools, colleges, and universities, from all the 50-United States. The study was performed using Google Trends, which helps to track and study Google Shopping-based online activity emerging from different geolocations. The results and discussions show that the highest interest related to Remote Learning-based Google Shopping was recorded from Oregon, which was followed by Illinois, Florida, Texas, California, and the other states.
Abstract:The rise of the Internet of Everything lifestyle in the last decade has had a significant impact on the increased emergence and adoption of online learning in almost all countries across the world. E-learning 3.0 is expected to become the norm of learning globally in almost all sectors in the next few years. The pervasiveness of the Semantic Web powered by the Internet of Everything lifestyle is expected to play a huge role towards seamless and faster adoption of the emerging paradigms of E-learning 3.0. Therefore, this paper presents an exploratory study to analyze multimodal components of Semantic Web behavior data to investigate the emergence of online learning in different countries across the world. The work specifically involved investigating relevant web behavior data to interpret the 5 W's and 1 H - Who, What, When Where, Why, and How related to online learning. Based on studying the E-learning Index of 2021, the study was performed for all the countries that are member states of the Organization for Economic Cooperation and Development. The results presented and discussed help to interpret the emergence of online learning in each of these countries in terms of the associated public perceptions, queries, opinions, behaviors, and perspectives. Furthermore, to support research and development in this field, we have published the web behavior-based Big Data related to online learning that was mined for all these 38 countries, in the form of a dataset, which is avail-able at https://dx.doi.org/10.21227/xbvs-0198.
Abstract:The exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications in assisted living, military, healthcare, firefighting, and industries. With the projected increase in the diverse uses of exoskeletons in the next few years in these application domains and beyond, it is crucial to study, interpret, and analyze user perspectives, public opinion, reviews, and feedback related to exoskeletons, for which a comprehensive dataset is necessary. The Internet of Everything (IOE) era of today's living, characterized by people spending more time on the Internet than ever before, holds the potential for developing such a dataset by the mining of relevant web behavior data from social media communications, which have increased exponentially in the last few years. Twitter, one such social media platform, is highly popular amongst all age groups, who communicate on diverse topics including but not limited to news, current events, politics, emerging technologies, family, relationships, and career opportunities, via tweets, while sharing their views, opinions, perspectives, and feedback towards the same. To address this research challenge by utilizing the potential of the IOE style of living, this paper makes multiple scientific contributions to this field. First, it presents a novel approach of mining tweets that is not bound by any restrictions on the number of days during which the tweets can be mined. Second, by application of this approach, it presents an open-access dataset of approximately 20,000 tweets related to exoskeletons, that were posted over a period of 231 days. Finally, based on an exploratory review of 108 emerging works in this field and its interrelated disciplines, the paper discusses multiple interdisciplinary applications of this dataset and presents 100 research questions for researchers to study, analyze, evaluate, and investigate.
Abstract:This framework for human behavior monitoring aims to take a holistic approach to study, track, monitor, and analyze human behavior during activities of daily living (ADLs). The framework consists of two novel functionalities. First, it can perform the semantic analysis of user interactions on the diverse contextual parameters during ADLs to identify a list of distinct behavioral patterns associated with different complex activities. Second, it consists of an intelligent decision-making algorithm that can analyze these behavioral patterns and their relationships with the dynamic contextual and spatial features of the environment to detect any anomalies in user behavior that could constitute an emergency. These functionalities of this interdisciplinary framework were developed by integrating the latest advancements and technologies in human-computer interaction, machine learning, Internet of Things, pattern recognition, and ubiquitous computing. The framework was evaluated on a dataset of ADLs, and the performance accuracies of these two functionalities were found to be 76.71% and 83.87%, respectively. The presented and discussed results uphold the relevance and immense potential of this framework to contribute towards improving the quality of life and assisted living of the aging population in the future of Internet of Things (IoT)-based ubiquitous living environments, e.g., smart homes.
Abstract:This work makes multiple scientific contributions to the field of Indoor Localization for Ambient Assisted Living in Smart Homes. First, it presents a Big-Data driven methodology that studies the multimodal components of user interactions and analyzes the data from Bluetooth Low Energy (BLE) beacons and BLE scanners to detect a user's indoor location in a specific activity-based zone during Activities of Daily Living. Second, it introduces a context independent approach that can interpret the accelerometer and gyroscope data from diverse behavioral patterns to detect the zone-based indoor location of a user in any Internet of Things (IoT)-based environment. These two approaches achieved performance accuracies of 81.36% and 81.13%, respectively, when tested on a dataset. Third, it presents a methodology to detect the spatial coordinates of a user's indoor position that outperforms all similar works in this field, as per the associated root mean squared error - one of the performance evaluation metrics in ISO/IEC18305:2016- an international standard for testing Localization and Tracking Systems. Finally, it presents a comprehensive comparative study that includes Random Forest, Artificial Neural Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep Learning, and Linear Regression, to address the challenge of identifying the optimal machine learning approach for Indoor Localization.
Abstract:The increasing population of elderly people is associated with the need to meet their increasing requirements and to provide solutions that can improve their quality of life in a smart home. In addition to fear and anxiety towards interfacing with systems; cognitive disabilities, weakened memory, disorganized behavior and even physical limitations are some of the problems that elderly people tend to face with increasing age. The essence of providing technology-based solutions to address these needs of elderly people and to create smart and assisted living spaces for the elderly; lies in developing systems that can adapt by addressing their diversity and can augment their performances in the context of their day to day goals. Therefore, this work proposes a framework for development of a Personalized Intelligent Assistant to help elderly people perform Activities of Daily Living (ADLs) in a smart and connected Internet of Things (IoT) based environment. This Personalized Intelligent Assistant can analyze different tasks performed by the user and recommend activities by considering their daily routine, current affective state and the underlining user experience. To uphold the efficacy of this proposed framework, it has been tested on a couple of datasets for modelling an average user and a specific user respectively. The results presented show that the model achieves a performance accuracy of 73.12% when modelling a specific user, which is considerably higher than its performance while modelling an average user, this upholds the relevance for development and implementation of this proposed framework.
Abstract:The population of elderly people has been increasing at a rapid rate over the last few decades and their population is expected to further increase in the upcoming future. Their increasing population is associated with their increasing needs due to problems like physical disabilities, cognitive issues, weakened memory and disorganized behavior, that elderly people face with increasing age. To reduce their financial burden on the world economy and to enhance their quality of life, it is essential to develop technology-based solutions that are adaptive, assistive and intelligent in nature. Intelligent Affect Aware Systems that can not only analyze but also predict the behavior of elderly people in the context of their day to day interactions with technology in an IoT-based environment, holds immense potential for serving as a long-term solution for improving the user experience of elderly in smart homes. This work therefore proposes the framework for an Intelligent Affect Aware environment for elderly people that can not only analyze the affective components of their interactions but also predict their likely user experience even before they start engaging in any activity in the given smart home environment. This forecasting of user experience would provide scope for enhancing the same, thereby increasing the assistive and adaptive nature of such intelligent systems. To uphold the efficacy of this proposed framework for improving the quality of life of elderly people in smart homes, it has been tested on three datasets and the results are presented and discussed.