Abstract:The rapid advancement of large language models (LLMs) has empowered intelligent agents to leverage diverse external tools for solving complex real-world problems. However, as agents increasingly depend on multiple tools, they encounter new challenges: extended contexts from disparate sources and noisy or irrelevant tool outputs can undermine system reliability and accuracy. These challenges underscore the necessity for enhanced stability in agent-based systems. To address this, we introduce dynamic supervision and maneuvering mechanisms, constructing a robust and dynamic Multi-Agent System (MAS) architecture within the AWorld framework. In our approach, the Execution Agent invokes the Guard Agent at critical steps to verify and correct the reasoning process, effectively reducing errors arising from noise and bolstering problem-solving robustness. Extensive experiments on the GAIA test dataset reveal that our dynamic maneuvering mechanism significantly improves both the effectiveness and stability of solutions, outperforming single-agent system (SAS) and standard tool-augmented systems. As a result, our dynamic MAS system achieved first place among open-source projects on the prestigious GAIA leaderboard. These findings highlight the practical value of collaborative agent roles in developing more reliable and trustworthy intelligent systems.
Abstract:Finetuned large language models (such as ChatGPT and Qwen-chat) can generate Chinese classical poetry following human's instructions. LLMs perform well in content, but are usually lacking in format, with occasionally excess or insufficient number of characters in each line. Since most SOTA LLMs are token-based, we assume that the format inaccuracy is due to the difficulty of the "token planning" task, which means that the LLM need to know exactly how much characters are contained in each token and do length-control planning based on that knowledge. In this paper, we first confirm our assumption by showing that existing token-based large language models has limited knowledge on token-character relationship. We use a spelling bee probing procedure, and find that Qwen-chat failed in nearly 15% Chinese spelling test. We then show that a token-based model can be easily tailored into a token-free model (in terms of Chinese), which can largely solve the format accuracy problem. Our tailoring procedure removes long-tokens from the vocabulary and the language model head, and keeps only character-level or byte-level tokens. As part of our contribution, we release the finetuned token-free model (which is based on Qwen-chat-7B), which can generate chinese classical poetry following complex instructions like LLMs (such as story paraphrasing), and also perform well in format. On the test set, our token-free model achives an format accuracy of 0.96, compared to 0.84 for token-based equivalents and 0.38 for GPT-4.