Abstract:As frontier AI systems advance toward transformative capabilities, we need a parallel transformation in how we measure and evaluate these systems to ensure safety and inform governance. While benchmarks have been the primary method for estimating model capabilities, they often fail to establish true upper bounds or predict deployment behavior. This literature review consolidates the rapidly evolving field of AI safety evaluations, proposing a systematic taxonomy around three dimensions: what properties we measure, how we measure them, and how these measurements integrate into frameworks. We show how evaluations go beyond benchmarks by measuring what models can do when pushed to the limit (capabilities), the behavioral tendencies exhibited by default (propensities), and whether our safety measures remain effective even when faced with subversive adversarial AI (control). These properties are measured through behavioral techniques like scaffolding, red teaming and supervised fine-tuning, alongside internal techniques such as representation analysis and mechanistic interpretability. We provide deeper explanations of some safety-critical capabilities like cybersecurity exploitation, deception, autonomous replication, and situational awareness, alongside concerning propensities like power-seeking and scheming. The review explores how these evaluation methods integrate into governance frameworks to translate results into concrete development decisions. We also highlight challenges to safety evaluations - proving absence of capabilities, potential model sandbagging, and incentives for "safetywashing" - while identifying promising research directions. By synthesizing scattered resources, this literature review aims to provide a central reference point for understanding AI safety evaluations.
Abstract:Input-output safeguards are used to detect anomalies in the traces produced by Large Language Models (LLMs) systems. These detectors are at the core of diverse safety-critical applications such as real-time monitoring, offline evaluation of traces, and content moderation. However, there is no widely recognized methodology to evaluate them. To fill this gap, we introduce the Benchmarks for the Evaluation of LLM Safeguards (BELLS), a structured collection of tests, organized into three categories: (1) established failure tests, based on already-existing benchmarks for well-defined failure modes, aiming to compare the performance of current input-output safeguards; (2) emerging failure tests, to measure generalization to never-seen-before failure modes and encourage the development of more general safeguards; (3) next-gen architecture tests, for more complex scaffolding (such as LLM-agents and multi-agent systems), aiming to foster the development of safeguards that could adapt to future applications for which no safeguard currently exists. Furthermore, we implement and share the first next-gen architecture test, using the MACHIAVELLI environment, along with an interactive visualization of the dataset.
Abstract:Reinforcement learning from human feedback (RLHF) is a technique for training AI systems to align with human goals. RLHF has emerged as the central method used to finetune state-of-the-art large language models (LLMs). Despite this popularity, there has been relatively little public work systematizing its flaws. In this paper, we (1) survey open problems and fundamental limitations of RLHF and related methods; (2) overview techniques to understand, improve, and complement RLHF in practice; and (3) propose auditing and disclosure standards to improve societal oversight of RLHF systems. Our work emphasizes the limitations of RLHF and highlights the importance of a multi-faceted approach to the development of safer AI systems.