Abstract:Microstructure often dictates materials performance, yet it is rarely treated as an explicit design variable because microstructure is hard to quantify, predict, and optimize. Here, we introduce an image centric, closed-loop framework that makes microstructural morphology into a controllable objective and demonstrate its use case with Li- and Mn-rich layered oxide cathode precursors. This work presents an integrated, AI driven framework for the predictive design and optimization of lithium-ion battery cathode precursor synthesis. This framework integrates a diffusion-based image generation model, a quantitative image analysis pipeline, and a particle swarm optimization (PSO) algorithm. By extracting key morphological descriptors such as texture, sphericity, and median particle size (D50) from SEM images, the platform accurately predicts SEM like morphologies resulting from specific coprecipitation conditions, including reaction time-, solution concentration-, and pH-dependent structural changes. Optimization then pinpoints synthesis parameters that yield user defined target morphologies, as experimentally validated by the close agreement between predicted and synthesized structures. This framework offers a practical strategy for data driven materials design, enabling both forward prediction and inverse design of synthesis conditions and paving the way toward autonomous, image guided microstructure engineering.
Abstract:Despite the success of deep learning in computer vision, algorithms to recognize subtle and small objects (or regions) is still challenging. For example, recognizing a baseball or a frisbee on a ground scene or a bone fracture in an X-ray image can easily result in overfitting, unless a huge amount of training data is available. To mitigate this problem, we need a way to force a model should identify subtle regions in limited training data. In this paper, we propose a simple but efficient supervised augmentation method called Cut\&Remain. It achieved better performance on various medical image domain (internally sourced- and public dataset) and a natural image domain (MS-COCO$_s$) than other supervised augmentation and the explicit guidance methods. In addition, using the class activation map, we identified that the Cut\&Remain methods drive a model to focus on relevant subtle and small regions efficiently. We also show that the performance monotonically increased along the Cut\&Remain ratio, indicating that a model can be improved even though only limited amount of Cut\&Remain is applied for, so that it allows low supervising (annotation) cost for improvement.