Abstract:Developing accurate and generalizable epileptic seizure prediction models from electroencephalography (EEG) data across multiple clinical sites is hindered by patient privacy regulations and significant data heterogeneity (non-IID characteristics). Federated Learning (FL) offers a privacy-preserving framework for collaborative training, but standard aggregation methods like Federated Averaging (FedAvg) can be biased by dominant datasets in heterogeneous settings. This paper investigates FL for seizure prediction using a single EEG channel across four diverse public datasets (Siena, CHB-MIT, Helsinki, NCH), representing distinct patient populations (adult, pediatric, neonate) and recording conditions. We implement privacy-preserving global normalization and propose a Random Subset Aggregation strategy, where each client trains on a fixed-size random subset of its data per round, ensuring equal contribution during aggregation. Our results show that locally trained models fail to generalize across sites, and standard weighted FedAvg yields highly skewed performance (e.g., 89.0% accuracy on CHB-MIT but only 50.8% on Helsinki and 50.6% on NCH). In contrast, Random Subset Aggregation significantly improves performance on under-represented clients (accuracy increases to 81.7% on Helsinki and 68.7% on NCH) and achieves a superior macro-average accuracy of 77.1% and pooled accuracy of 80.0% across all sites, demonstrating a more robust and fair global model. This work highlights the potential of balanced FL approaches for building effective and generalizable seizure prediction systems in realistic, heterogeneous multi-hospital environments while respecting data privacy.
Abstract:In computational biology, predictive models are widely used to address complex tasks, but their performance can suffer greatly when applied to data from different distributions. The current state-of-the-art domain adaptation method for high-dimensional data aims to mitigate these issues by aligning the input dependencies between training and test data. However, this approach requires centralized access to both source and target domain data, raising concerns about data privacy, especially when the data comes from multiple sources. In this paper, we introduce a privacy-preserving federated framework for unsupervised domain adaptation in high-dimensional settings. Our method employs federated training of Gaussian processes and weighted elastic nets to effectively address the problem of distribution shift between domains, while utilizing secure aggregation and randomized encoding to protect the local data of participating data owners. We evaluate our framework on the task of age prediction using DNA methylation data from multiple tissues, demonstrating that our approach performs comparably to existing centralized methods while maintaining data privacy, even in distributed environments where data is spread across multiple institutions. Our framework is the first privacy-preserving solution for high-dimensional domain adaptation in federated environments, offering a promising tool for fields like computational biology and medicine, where protecting sensitive data is essential.