Abstract:Electronic Health Records (EHRs), the digital representation of a patient's medical history, are a valuable resource for epidemiological and clinical research. They are also becoming increasingly complex, with recent trends indicating larger datasets, longer time series, and multi-modal integrations. Transformers, which have rapidly gained popularity due to their success in natural language processing and other domains, are well-suited to address these challenges due to their ability to model long-range dependencies and process data in parallel. But their application to EHR classification remains limited by data representations, which can reduce performance or fail to capture informative missingness. In this paper, we present the Bi-Axial Transformer (BAT), which attends to both the clinical variable and time point axes of EHR data to learn richer data relationships and address the difficulties of data sparsity. BAT achieves state-of-the-art performance on sepsis prediction and is competitive to top methods for mortality classification. In comparison to other transformers, BAT demonstrates increased robustness to data missingness, and learns unique sensor embeddings which can be used in transfer learning. Baseline models, which were previously located across multiple repositories or utilized deprecated libraries, were re-implemented with PyTorch and made available for reproduction and future benchmarking.
Abstract:Automatic Image Cropping is a challenging task with many practical downstream applications. The task is often divided into sub-problems - generating cropping candidates, finding the visually important regions, and determining aesthetics to select the most appealing candidate. Prior approaches model one or more of these sub-problems separately, and often combine them sequentially. We propose a novel convolutional neural network (CNN) based method to crop images directly, without explicitly modeling image aesthetics, evaluating multiple crop candidates, or detecting visually salient regions. Our model is trained on a large dataset of images cropped by experienced editors and can simultaneously predict bounding boxes for multiple fixed aspect ratios. We consider the aspect ratio of the cropped image to be a critical factor that influences aesthetics. Prior approaches for automatic image cropping, did not enforce the aspect ratio of the outputs, likely due to a lack of datasets for this task. We, therefore, benchmark our method on public datasets for two related tasks - first, aesthetic image cropping without regard to aspect ratio, and second, thumbnail generation that requires fixed aspect ratio outputs, but where aesthetics are not crucial. We show that our strategy is competitive with or performs better than existing methods in both these tasks. Furthermore, our one-stage model is easier to train and significantly faster than existing two-stage or end-to-end methods for inference. We present a qualitative evaluation study, and find that our model is able to generalize to diverse images from unseen datasets and often retains compositional properties of the original images after cropping. Our results demonstrate that explicitly modeling image aesthetics or visual attention regions is not necessarily required to build a competitive image cropping algorithm.