Abstract:Generative AI advances rapidly, allowing the creation of very realistic manipulated video and audio. This progress presents a significant security and ethical threat, as malicious users can exploit DeepFake techniques to spread misinformation. Recent DeepFake detection approaches explore the multimodal (audio-video) threat scenario. In particular, there is a lack of reproducibility and critical issues with existing datasets - such as the recently uncovered silence shortcut in the widely used FakeAVCeleb dataset. Considering the importance of this topic, we aim to gain a deeper understanding of the key issues affecting benchmarking in audio-video DeepFake detection. We examine these challenges through the lens of the three core benchmarking pillars: datasets, detection methods, and evaluation protocols. To address these issues, we spotlight the recent DeepSpeak v1 dataset and are the first to propose an evaluation protocol and benchmark it using SOTA models. We introduce SImple Multimodal BAseline (SIMBA), a competitive yet minimalistic approach that enables the exploration of diverse design choices. We also deepen insights into the issue of audio shortcuts and present a promising mitigation strategy. Finally, we analyze and enhance the evaluation scheme on the widely used FakeAVCeleb dataset. Our findings offer a way forward in the complex area of audio-video DeepFake detection.
Abstract:Deep Learning (DL) models have become crucial in digital transformation, thus raising concerns about their intellectual property rights. Different watermarking techniques have been developed to protect Deep Neural Networks (DNNs) from IP infringement, creating a competitive field for DNN watermarking and removal methods. The predominant watermarking schemes use white-box techniques, which involve modifying weights by adding a unique signature to specific DNN layers. On the other hand, existing attacks on white-box watermarking usually require knowledge of the specific deployed watermarking scheme or access to the underlying data for further training and fine-tuning. We propose DeepEclipse, a novel and unified framework designed to remove white-box watermarks. We present obfuscation techniques that significantly differ from the existing white-box watermarking removal schemes. DeepEclipse can evade watermark detection without prior knowledge of the underlying watermarking scheme, additional data, or training and fine-tuning. Our evaluation reveals that DeepEclipse excels in breaking multiple white-box watermarking schemes, reducing watermark detection to random guessing while maintaining a similar model accuracy as the original one. Our framework showcases a promising solution to address the ongoing DNN watermark protection and removal challenges.