Abstract:This paper proposes an eXplainable Artificial Intelligence (XAI)-driven methodology to enhance the understanding of cough sound analysis for respiratory disease management. We employ occlusion maps to highlight relevant spectral regions in cough spectrograms processed by a Convolutional Neural Network (CNN). Subsequently, spectral analysis of spectrograms weighted by these occlusion maps reveals significant differences between disease groups, particularly in patients with COPD, where cough patterns appear more variable in the identified spectral regions of interest. This contrasts with the lack of significant differences observed when analyzing raw spectrograms. The proposed approach extracts and analyzes several spectral features, demonstrating the potential of XAI techniques to uncover disease-specific acoustic signatures and improve the diagnostic capabilities of cough sound analysis by providing more interpretable results.
Abstract:First-pass perfusion cardiac magnetic resonance (FPP-CMR) is becoming an essential non-invasive imaging method for detecting deficits of myocardial blood flow, allowing the assessment of coronary heart disease. Nevertheless, acquisitions suffer from relatively low spatial resolution and limited heart coverage. Compressed sensing (CS) methods have been proposed to accelerate FPP-CMR and achieve higher spatial resolution. However, the long reconstruction times have limited the widespread clinical use of CS in FPP-CMR. Deep learning techniques based on supervised learning have emerged as alternatives for speeding up reconstructions. However, these approaches require fully sampled data for training, which is not possible to obtain, particularly high-resolution FPP-CMR images. Here, we propose a physics-informed self-supervised deep learning FPP-CMR reconstruction approach for accelerating FPP-CMR scans and hence facilitate high spatial resolution imaging. The proposed method provides high-quality FPP-CMR images from 10x undersampled data without using fully sampled reference data.