Abstract:The computational sparsity of Mixture-of-Experts (MoE) models enables sub-linear growth in compute cost as model size increases, offering a scalable path to training massive neural networks. However, existing implementations suffer from \emph{low GPU utilization}, \emph{significant latency overhead}, and a fundamental \emph{inability to leverage task locality}, primarily due to CPU-managed scheduling, host-initiated communication, and frequent kernel launches. To overcome these limitations, we develop FlashDMoE, a fully GPU-resident MoE operator that fuses expert computation and inter-GPU communication into a \emph{single persistent GPU kernel}. FlashDMoE enables fine-grained pipelining of dispatch, compute, and combine phases, eliminating launch overheads and reducing idle gaps. Its device-initiated communication protocol introduces \emph{payload-efficient} data transfers, significantly shrinking buffer sizes in sparsely activated MoE layers. When evaluated on a single 8-H100 GPU node with MoE models having up to 128 experts and 16K token sequences, FlashDMoE achieves up to \textbf{6}x lower latency, \textbf{5,7}x higher throughput, \textbf{4}x better weak scaling efficiency, and \textbf{9}x higher GPU utilization compared to state-of-the-art baselines, despite using FP32 while baselines use FP16. FlashDMoE demonstrates that principled GPU kernel-hardware co-design is key to unlocking the performance ceiling of large-scale distributed ML workloads.
Abstract:Nowadays, Deep learning techniques show dramatic performance on computer vision area, and they even outperform human. But it is also vulnerable to some small perturbation called an adversarial attack. This is a problem combined with the safety of artificial intelligence, which has recently been studied a lot. These attacks have shown that they can fool models of image classification, semantic segmentation, and object detection. We point out this attack can be protected by denoise autoencoder, which is used for denoising the perturbation and restoring the original images. We experiment with various noise distributions and verify the effect of denoise autoencoder against adversarial attack in semantic segmentation.