Abstract:The convergence of Language models, Agent models, and World models represents a critical frontier for artificial intelligence. While recent progress has focused on scaling Language and Agent models, the development of sophisticated, explicit World Models remains a key bottleneck, particularly for complex, long-horizon multi-agent tasks. In domains such as robotic soccer, agents trained via standard reinforcement learning in high-fidelity but structurally-flat simulators often fail due to intractable exploration spaces and sparse rewards. This position paper argues that the next frontier in developing capable agents lies in creating environments that possess an explicit, hierarchical World Model. We contend that this is best achieved through hierarchical scaffolding, where complex goals are decomposed into structured, manageable subgoals. Drawing evidence from a systematic review of 2024 research in multi-agent soccer, we identify a clear and decisive trend towards integrating symbolic and hierarchical methods with multi-agent reinforcement learning (MARL). These approaches implicitly or explicitly construct a task-based world model to guide agent learning. We then propose a paradigm shift: leveraging Large Language Models to dynamically generate this hierarchical scaffold, effectively using language to structure the World Model on the fly. This language-driven world model provides an intrinsic curriculum, dense and meaningful learning signals, and a framework for compositional learning, enabling Agent Models to acquire sophisticated, strategic behaviors with far greater sample efficiency. By building environments with explicit, language-configurable task layers, we can bridge the gap between low-level reactive behaviors and high-level strategic team play, creating a powerful and generalizable framework for training the next generation of intelligent agents.
Abstract:As the complexity of artificial agents increases, the design of environments that can effectively shape their behavior and capabilities has become a critical research frontier. We propose a framework that extends this principle to a novel class of agents: biological neural networks in the form of neural organoids. This paper introduces three scalable, closed-loop virtual environments designed to train organoid-based biological agents and probe the underlying mechanisms of learning, such as long-term potentiation (LTP) and long-term depression (LTD). We detail the design of three distinct task environments with increasing complexity: (1) a conditional avoidance task, (2) a one-dimensional predator-prey scenario, and (3) a replication of the classic Pong game. For each environment, we formalize the state and action spaces, the sensory encoding and motor decoding mechanisms, and the feedback protocols based on predictable (reward) and unpredictable (punishment) stimulation. Furthermore, we propose a novel meta-learning approach where a Large Language Model (LLM) is used to automate the generation and optimization of experimental protocols, scaling the process of environment and curriculum design. Finally, we outline a multi-modal approach for evaluating learning by measuring synaptic plasticity at electrophysiological, cellular, and molecular levels. This work bridges the gap between computational neuroscience and agent-based AI, offering a unique platform for studying embodiment, learning, and intelligence in a controlled biological substrate.
Abstract:The proliferation of Large Language Models (LLMs) has introduced critical security challenges, where adversarial actors can manipulate input prompts to cause significant harm and circumvent safety alignments. These prompt-based attacks exploit vulnerabilities in a model's design, training, and contextual understanding, leading to intellectual property theft, misinformation generation, and erosion of user trust. A systematic understanding of these attack vectors is the foundational step toward developing robust countermeasures. This paper presents a comprehensive literature survey of prompt-based attack methodologies, categorizing them to provide a clear threat model. By detailing the mechanisms and impacts of these exploits, this survey aims to inform the research community's efforts in building the next generation of secure LLMs that are inherently resistant to unauthorized distillation, fine-tuning, and editing.
Abstract:World models that infer and predict environmental dynamics are foundational to embodied intelligence. However, their potential is often limited by the finite complexity and implicit biases of hand-crafted training environments. To develop truly generalizable and robust agents, we need environments that scale in complexity alongside the agents learning within them. In this work, we reframe the challenge of environment generation as the problem of learning a goal-conditioned, generative world model. We propose a system where a generative **Attacker** agent learns an implicit world model to synthesize increasingly difficult challenges for a team of cooperative **Defender** agents. The Attacker's objective is not passive prediction, but active, goal-driven interaction: it models and generates world states (i.e., configurations of enemy units) specifically to exploit the Defenders' weaknesses. Concurrently, the embodied Defender team learns a cooperative policy to overcome these generated worlds. This co-evolutionary dynamic creates a self-scaling curriculum where the world model continuously adapts to challenge the decision-making policy of the agents, providing an effectively infinite stream of novel and relevant training scenarios. We demonstrate that this framework leads to the emergence of complex behaviors, such as the world model learning to generate flanking and shielding formations, and the defenders learning coordinated focus-fire and spreading tactics. Our findings position adversarial co-evolution as a powerful method for learning instrumental world models that drive agents toward greater strategic depth and robustness.