Abstract:Artificial Intelligence (AI) systems are now an integral part of multiple industries. In clinical research, AI supports automated adverse event detection in clinical trials, patient eligibility screening for protocol enrollment, and data quality validation. Beyond healthcare, AI is transforming finance through real-time fraud detection, automated loan risk assessment, and algorithmic decision-making. Similarly, in manufacturing, AI enables predictive maintenance to reduce equipment downtime, enhances quality control through computer-vision inspection, and optimizes production workflows using real-time operational data. While these technologies enhance operational efficiency, they introduce new challenges regarding safety, accountability, and regulatory compliance. To address these concerns, we introduce the SMART+ Framework - a structured model built on the pillars of Safety, Monitoring, Accountability, Reliability, and Transparency, and further enhanced with Privacy & Security, Data Governance, Fairness & Bias, and Guardrails. SMART+ offers a practical, comprehensive approach to evaluating and governing AI systems across industries. This framework aligns with evolving mechanisms and regulatory guidance to integrate operational safeguards, oversight procedures, and strengthened privacy and governance controls. SMART+ demonstrates risk mitigation, trust-building, and compliance readiness. By enabling responsible AI adoption and ensuring auditability, SMART+ provides a robust foundation for effective AI governance in clinical research.
Abstract:This paper examines how decision makers in academia, government, business, and civil society navigate questions of power in implementations of artificial intelligence. The study explores how individuals experience and exercise levers of power, which are presented as social mechanisms that shape institutional responses to technological change. The study reports on the responses of personalized questionnaires designed to gather insight on a decision maker's institutional purview, based on an institutional governance framework developed from the work of Neo-institutionalists. Findings present the anonymized, real responses and circumstances of respondents in the form of twelve fictional personas of high-level decision makers from North America and Europe. These personas illustrate how personal agency, organizational logics, and institutional infrastructures may intersect in the governance of AI. The decision makers' responses to the questionnaires then inform a discussion of the field-level personal power of decision makers, methods of fostering institutional stability in times of change, and methods of influencing institutional change in the field of AI. The final section of the discussion presents a table of the dynamics of the levers of power in the field of AI for change makers and five testable hypotheses for institutional and social movement researchers. In summary, this study provides insight on the means for policymakers within institutions and their counterparts in civil society to personally engage with AI governance.