Abstract:Out-of-distribution (OOD) detection is essential for the safe deployment of neural networks, as it enables the identification of samples outside the training domain. We present FOODER, a real-time, privacy-preserving radar-based framework that integrates OOD-based facial authentication with facial expression recognition. FOODER operates using low-cost frequency-modulated continuous-wave (FMCW) radar and exploits both range-Doppler and micro range-Doppler representations. The authentication module employs a multi-encoder multi-decoder architecture with Body Part (BP) and Intermediate Linear Encoder-Decoder (ILED) components to classify a single enrolled individual as in-distribution while detecting all other faces as OOD. Upon successful authentication, an expression recognition module is activated. Concatenated radar representations are processed by a ResNet block to distinguish between dynamic and static facial expressions. Based on this categorization, two specialized MobileViT networks are used to classify dynamic expressions (smile, shock) and static expressions (neutral, anger). This hierarchical design enables robust facial authentication and fine-grained expression recognition while preserving user privacy by relying exclusively on radar data. Experiments conducted on a dataset collected with a 60 GHz short-range FMCW radar demonstrate that FOODER achieves an AUROC of 94.13% and an FPR95 of 18.12% for authentication, along with an average expression recognition accuracy of 94.70%. FOODER outperforms state-of-the-art OOD detection methods and several transformer-based architectures while operating efficiently in real time.




Abstract:In this work, we propose a novel pipeline for face recognition and out-of-distribution (OOD) detection using short-range FMCW radar. The proposed system utilizes Range-Doppler and micro Range-Doppler Images. The architecture features a primary path (PP) responsible for the classification of in-distribution (ID) faces, complemented by intermediate paths (IPs) dedicated to OOD detection. The network is trained in two stages: first, the PP is trained using triplet loss to optimize ID face classification. In the second stage, the PP is frozen, and the IPs-comprising simple linear autoencoder networks-are trained specifically for OOD detection. Using our dataset generated with a 60 GHz FMCW radar, our method achieves an ID classification accuracy of 99.30% and an OOD detection AUROC of 96.91%.




Abstract:This paper proposes a short-range FMCW radar-based facial authentication and out-of-distribution (OOD) detection framework. Our pipeline jointly estimates the correct classes for the in-distribution (ID) samples and detects the OOD samples to prevent their inaccurate prediction. Our reconstruction-based architecture consists of a main convolutional block with one encoder and multi-decoder configuration, and intermediate linear encoder-decoder parts. Together, these elements form an accurate human face classifier and a robust OOD detector. For our dataset, gathered using a 60 GHz short-range FMCW radar, our network achieves an average classification accuracy of 98.07% in identifying in-distribution human faces. As an OOD detector, it achieves an average Area Under the Receiver Operating Characteristic (AUROC) curve of 98.50% and an average False Positive Rate at 95% True Positive Rate (FPR95) of 6.20%. Also, our extensive experiments show that the proposed approach outperforms previous OOD detectors in terms of common OOD detection metrics.