Abstract:Register Transfer Level(RTL) code optimization is crucial for achieving high performance and low power consumption in digital circuit design. However, traditional optimization methods often rely on manual tuning and heuristics, which can be time-consuming and error-prone. Recent studies proposed to leverage Large Language Models(LLMs) to assist in RTL code optimization. LLMs can generate optimized code snippets based on natural language descriptions, potentially speeding up the optimization process. However, existing approaches have not thoroughly evaluated the effectiveness of LLM-Based code optimization methods for RTL code with complex timing logic. To address this gap, we conducted a comprehensive empirical investigation to assess the capability of LLM-Based RTL code optimization methods in handling RTL code with complex timing logic. In this study, we first propose a new benchmark for RTL optimization evaluation. It comprises four subsets, each corresponding to a specific area of RTL code optimization. Then we introduce a method based on metamorphosis to systematically evaluate the effectiveness of LLM-Based RTL code optimization methods.Our key insight is that the optimization effectiveness should remain consistent for semantically equivalent but more complex code. After intensive experiments, we revealed several key findings. (1) LLM-Based RTL optimization methods can effectively optimize logic operations and outperform existing compiler-based methods. (2) LLM-Based RTL optimization methods do not perform better than existing compiler-based methods on RTL code with complex timing logic, particularly in timing control flow optimization and clock domain optimization. This is primarily attributed to the challenges LLMs face in understanding timing logic in RTL code. Based on these findings, we provide insights for further research in leveraging LLMs for RTL code optimization.