Abstract:Android malware has become an increasingly critical threat to organizations, society and individuals, posing significant risks to privacy, data security and infrastructure. As malware continues to evolve in terms of complexity and sophistication, the mitigation and detection of these malicious software instances have become more time consuming and challenging particularly due to the requirement of large number of features to identify potential malware. To address these challenges, this research proposes Fast Gradient Sign Method with Diluted Convolutional Neural Network (FGSM DICNN) method for malware classification. DICNN contains diluted convolutions which increases receptive field, enabling the model to capture dispersed malware patterns across long ranges using fewer features without adding parameters. Additionally, the FGSM strategy enhance the accuracy by using one-step perturbations during training that provides more defensive advantage of lower computational cost. This integration helps to manage high classification accuracy while reducing the dependence on extensive feature sets. The proposed FGSM DICNN model attains 99.44% accuracy while outperforming other existing approaches such as Custom Deep Neural Network (DCNN).
Abstract:Stock market price prediction is a significant interdisciplinary research domain that depends at the intersection of finance, statistics, and economics. Forecasting Accurately predicting stock prices has always been a focal point for various researchers. However, existing statistical approaches for time-series prediction often fail to effectively forecast the probability range of future stock prices. Hence, to solve this problem, the Neural Prophet with a Deep Neural Network (NP-DNN) is proposed to predict stock market prices. The preprocessing technique used in this research is Z-score normalization, which normalizes stock price data by removing scale differences, making patterns easier to detect. Missing value imputation fills gaps in historical data, enhancing the models use of complete information for more accurate predictions. The Multi-Layer Perceptron (MLP) learns complex nonlinear relationships among stock market prices and extracts hidden patterns from the input data, thereby creating meaningful feature representations for better prediction accuracy. The proposed NP-DNN model achieved an accuracy of 99.21% compared with other approaches using the Fused Large Language Model. Keywords: deep neural network, forecasting stock prices, multi-layer perceptron, neural prophet, stock market price prediction.