Abstract:This study presents an end-to-end learning framework for data-driven modeling of path-dependent inelastic materials using neural operators. The framework is built on the premise that irreversible evolution of material responses, governed by hidden dynamics, can be inferred from observable data. We develop the History-Aware Neural Operator (HANO), an autoregressive model that predicts path-dependent material responses from short segments of recent strain-stress history without relying on hidden state variables, thereby overcoming self-consistency issues commonly encountered in recurrent neural network (RNN)-based models. Built on a Fourier-based neural operator backbone, HANO enables discretization-invariant learning. To enhance its ability to capture both global loading patterns and critical local path dependencies, we embed a hierarchical self-attention mechanism that facilitates multiscale feature extraction. Beyond ensuring self-consistency, HANO mitigates sensitivity to initial hidden states, a commonly overlooked issue that can lead to instability in recurrent models when applied to generalized loading paths. By modeling stress-strain evolution as a continuous operator rather than relying on fixed input-output mappings, HANO naturally accommodates varying path discretizations and exhibits robust performance under complex conditions, including irregular sampling, multi-cycle loading, noisy data, and pre-stressed states. We evaluate HANO on two benchmark problems: elastoplasticity with hardening and progressive anisotropic damage in brittle solids. Results show that HANO consistently outperforms baseline models in predictive accuracy, generalization, and robustness. With its demonstrated capabilities, HANO provides an effective data-driven surrogate for simulating inelastic materials and is well-suited for integration with classical numerical solvers.
Abstract:The present study aims to extend the novel physics-informed machine learning approach, specifically the neural-integrated meshfree (NIM) method, to model finite-strain problems characterized by nonlinear elasticity and large deformations. To this end, the hyperelastic material models are integrated into the loss function of the NIM method by employing a consistent local variational formulation. Thanks to the inherent differentiable programming capabilities, NIM can circumvent the need for derivation of Newton-Raphson linearization of the variational form and the resulting tangent stiffness matrix, typically required in traditional numerical methods. Additionally, NIM utilizes a hybrid neural-numerical approximation encoded with partition-of-unity basis functions, coined NeuroPU, to effectively represent the displacement and streamline the training process. NeuroPU can also be used for approximating the unknown material fields, enabling NIM a unified framework for both forward and inverse modeling. For the imposition of displacement boundary conditions, this study introduces a new approach based on singular kernel functions into the NeuroPU approximation, leveraging its unique feature that allows for customized basis functions. Numerical experiments demonstrate the NIM method's capability in forward hyperelasticity modeling, achieving desirable accuracy, with errors among $10^{-3} \sim 10^{-5}$ in the relative $L_2$ norm, comparable to the well-established finite element solvers. Furthermore, NIM is applied to address the complex task of identifying heterogeneous mechanical properties of hyperelastic materials from strain data, validating its effectiveness in the inverse modeling of nonlinear materials. To leverage GPU acceleration, NIM is fully implemented on the JAX deep learning framework in this study, utilizing the accelerator-oriented array computation capabilities offered by JAX.