Abstract:The efficient exploration of chemical space remains a central challenge, as many generative models still produce unstable or non-synthesizable compounds. To address these limitations, we present EvoMol-RL, a significant extension of the EvoMol evolutionary algorithm that integrates reinforcement learning to guide molecular mutations based on local structural context. By leveraging Extended Connectivity Fingerprints (ECFPs), EvoMol-RL learns context-aware mutation policies that prioritize chemically plausible transformations. This approach significantly improves the generation of valid and realistic molecules, reducing the frequency of structural artifacts and enhancing optimization performance. The results demonstrate that EvoMol-RL consistently outperforms its baseline in molecular pre-filtering realism. These results emphasize the effectiveness of combining reinforcement learning with molecular fingerprints to generate chemically relevant molecular structures.



Abstract:AI-assisted molecular optimization is a very active research field as it is expected to provide the next-generation drugs and molecular materials. An important difficulty is that the properties to be optimized rely on costly evaluations. Machine learning methods are investigated with success to predict these properties, but show generalization issues on less known areas of the chemical space. We propose here a surrogate-based black box optimization method, to tackle jointly the optimization and machine learning problems. It consists in optimizing the expected improvement of the surrogate of a molecular property using an evolutionary algorithm. The surrogate is defined as a Gaussian Process Regression (GPR) model, learned on a relevant area of the search space with respect to the property to be optimized. We show that our approach can successfully optimize a costly property of interest much faster than a purely metaheuristic approach.